大气云模型优化(ACMO):理论
本文致力于介绍一种元启发式算法——大气云模型优化(ACMO)算法,该算法通过模拟云层的行为来解决优化问题。该算法利用云层的生成、移动和传播的原理,适应解空间中的“天气条件”。本文揭示了该算法如何通过气象模拟在复杂的可能性空间中找到最优解,并详细描述了ACMO运行的各个阶段,包括“天空”准备、云层的生成、云层的移动以及水的集中。
在 MQL5 中创建交易管理员面板(第五部分):双因素认证(2FA)
今天,我们将讨论如何增强当前正在开发的交易管理员面板的安全性。我们将探讨如何在新的安全策略中实施 MQL5,并将 Telegram API 集成到双因素认证(2FA)中。本次讨论将提供有关 MQL5 在加强安全措施方面的应用的宝贵见解。此外,我们还将研究 MathRand 函数,重点关注其功能以及如何在我们构建的安全框架中有效利用它。继续阅读以了解更多信息!
您应当知道的 MQL5 向导技术(第 22 部分):条件化生成式对抗网络(cGAN)
生成式对抗网络是一对神经网络,它们彼此相互训练,以便结果更精准。我们采用这些网络的条件化类型,作为我们正在寻找的可选项,应用于智能信号类之内预测金融时间序列。
您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM
限制性玻尔兹曼(Boltzmann)机处于基本等级,是一个两层神经网络,擅长通过降维进行无监督分类。我们取其基本原理,并检验如果我们重新设计和训练它,我们是否可以得到一个实用的信号滤波器。
在MQL5中构建带自定义画布图形的凯特纳通道(Keltner Channel)指标
本文将介绍如何在MQL5中构建一个带自定义画布图形的凯特纳通道(Keltner Channel)指标。我们将详细阐述移动平均线(MA)与平均真实波幅(ATR)计算的集成方法,以及如何增强型图表的可视化效果。此外,我们还将介绍如何通过回测评估该指标的实际交易表现,为实战交易提供有价值的参考依据。
开发多币种 EA 交易(第 21 部分):准备重要实验并优化代码
为了取得进一步的进展,最好看看我们是否可以通过定期重新运行自动优化并生成新的 EA 来改进结果。关于使用参数优化的许多争论中的绊脚石是,在将盈利能力和回撤保持在指定水平的同时,所获得的参数在未来一段时间内可用于交易的时间有多长。有可能做到这一点吗?
开发回放系统(第 58 部分):重返服务工作
在回放/模拟器服务的开发和改进暂停之后,我们正在恢复该工作。现在我们已经放弃使用终端全局变量等资源,我们将不得不完全重组其中的一些部分。别担心,我们会详细解释这个过程,这样每个人都可以关注我们服务的发展。
您应当知道的 MQL5 向导技术(第 25 部分):多时间帧测试和交易
默认情况下,由于组装类中使用了 MQL5 代码架构,故基于多时间帧策略,且由向导组装的智能系统无法进行测试。我们探索一种绕过该限制的方式,看看搭配二次移动平均线的情况下,研究运用多时间帧策略的可能性。
交易中的神经网络:节点-自适应图形表征(NAFS)
我们邀请您领略 NAFS(节点-自适应特征平滑)方法,这是一种创建节点表征的非参数方法,不需要参数训练。NAFS 提取每个给定节点的邻域特征,然后把这些特征自适应组合,从而形成最终表征。
神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)
在我们的模型中,我们经常使用各种关注度算法。而且,可能我们最常使用变换器。它们的主要缺点是资源需求。在本文中,我们将研究一种新算法,它可以帮助降低计算成本,而不会降低品质。
开发多币种 EA 交易 (第 13 部分):自动化第二阶段 — 分组选择
我们已经实现了自动化优化的第一阶段。我们根据若干标准对不同的交易品种和时间框架进行优化,并将每次通过的结果信息存储在数据库中。现在我们将从第一阶段找到的参数集中选择最佳组。
开发回放系统(第 46 部分):Chart Trade 项目(五)
厌倦了浪费时间搜索应用程序工作所需的文件吗?在可执行文件中包含所有内容如何?这样,你就不用再去找东西了。我知道很多人都使用这种分发和存储形式,但还有一种更合适的方式。至少在可执行文件的分发和存储方面是这样。这里将介绍的方法非常有用,因为您可以将 MetaTrader 5 本身用作优秀的助手,也可以使用 MQL5。此外,它并不难理解。
神经网络变得简单(第 63 部分):决策转换器无监督预训练(PDT)
我们将继续讨论决策转换器方法系列。从上一篇文章中,我们已经注意到,训练这些方法架构下的转换器是一项相当复杂的任务,需要一个大型标记数据集进行训练。在本文中,我们将观看到一种使用未标记轨迹进行初步模型训练的算法。
您应当知道的 MQL5 向导技术(第 32 部分):正则化
正则化是一种在贯穿神经网络各层应用离散权重,按比例惩罚损失函数的形式。我们来考察其重要性,对于一些不同的正则化形式,能够在配合向导组装的智能系统运行测试。
构建蜡烛图趋势约束模型(第8部分):EA开发(II)
构思一个独立的EA。之前,我们讨论了一个基于指标的EA,它还与一个独立脚本配合,用于绘制风险与收益图形。今天,我们将讨论一个整合了所有功能的MQL5 EA的架构。
使用MQL5经济日历进行交易(第五部分):添加响应式控件和过滤按钮的增强型仪表盘
在本文中,我们创建了用于货币对过滤、重要性级别过滤、时间过滤以及取消选项的按钮,以改进仪表盘的控制功能。通过编程让这些按钮能够动态响应用户操作,实现无缝交互。我们还对其行为进行了自动化处理,以便在仪表盘上实时反映变化。这样就提升了面板的整体功能性、灵活性和响应速度。
开发回放系统(第 49 部分):事情变得复杂 (一)
在本文中,我们将把问题复杂化。通过前面文章中展示的内容,我们将开始打开模板文件,以便用户可以使用自己的模板。不过,我将逐步进行修改,因为我还将改进指标,以减少 MetaTrader 5 的负载。
使用MQL5经济日历进行交易(第六部分):利用新闻事件分析和倒计时器实现交易入场自动化
在本文中,我们将借助MQL5经济日历实现交易入场自动化,具体方法是应用用户自定义的筛选条件和时差偏移量来识别符合条件的新闻事件。我们通过对比预测值和前值,来确定是开立买入(BUY)单还是卖出(SELL)订单。动态倒计时器会显示距离新闻发布剩余的时间,并且在完成一笔交易后自动重置。
开发多币种 EA 交易(第 24 部分):添加新策略(一)
在本文中,我们将研究如何将新策略连接到我们创建的自动优化系统。让我们看看我们需要创建哪些类型的 EA,以及是否可以在不更改 EA 库文件的情况下完成,或者尽量减少必要的更改。
人工喷淋算法(ASHA)
本文介绍了人工喷淋算法(Artificial Showering Algorithm,ASHA),这是一种为解决一般优化问题而开发的新型元启发式方法。基于对水流和积聚过程的模拟,该算法构建了理想场的概念,其中要求每个资源单元(水)找到最优解。我们将了解 ASHA 如何调整流和累积原则来有效地分配搜索空间中的资源,并查看其实现和测试结果。
构建K线图趋势约束模型(第5部分):通知系统(第二部分)
今天,我们将讨论如何使用MQL5与Python和Telegram Bot API相结合,为MetaTrader 5的指标通知集成一个实用的Telegram应用。我们将详细解释所有内容,确保每个人都不会错过任何要点。完成这个项目后,您将获得宝贵的见解,可以在自己的项目中加以应用。
您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习
SARSA 是 “State-Action-Reward-State-Action” 的缩写,是另一种能在实现强化学习时运用的算法。故此,正如我们在 Q-学习 和 DQN 中看到的那样,我们考察了如何在向导汇编的智能系统中探索和实现它,将其作为独立模型,而不仅仅是一种训练机制。
随机优化和最优控制示例
这款名为SMOC(可能代表随机模型最优控制)的EA,是MetaTrader 5平台上一个较为先进的算法交易系统的简单示例。它结合了技术指标、模型预测控制以及动态风险管理来做出交易决策。该EA融入了自适应参数、基于波动率的仓位规模调整以及趋势分析,以优化其在不同市场条件下的表现。
开发回放系统(第 39 部分):铺平道路(三)
在进入开发的第二阶段之前,我们需要修正一些想法。您知道如何让 MQL5 满足您的需求吗?您是否尝试过超出文档所包含的范围?如果没有,那就做好准备吧。因为我们将做一些大多数人通常不会做的事情。
风险管理(第一部分):建立风险管理类的基础知识
在本文中,我们将介绍交易风险管理的基础知识,并学习如何创建第一个函数来计算交易的适当手数以及止损。此外,我们将详细介绍这些功能的工作原理,解释每个步骤。我们的目标是清楚地了解如何在自动交易中应用这些概念。最后,我们将通过创建一个包含文件的简单脚本来将所有内容付诸实践。
开发回放系统(第 36 部分):进行调整(二)
让我们的程序员生活举步维艰的原因之一就是做出假设。在本文中,我将向您展示假设是多么危险:例如在 MQL5 编程中假设类型将具有某个特定值,或是在 MetaTrader 5 中假设不同服务器的工作方式相同。
您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试
默认情况下,财经日历数据在策略测试器中不可用于智能系统测试。我们看看数据库能如何提供帮助,绕过这个限制。故此,在本文中,我们会探讨如何使用 SQLite 数据库来存档财经日历新闻,如此这般,由向导组装的智能系统就可以用它来生成交易信号。
交易中的神经网络:对比形态变换器(终章)
在本系列的上一篇文章中,我们考察了“原子-基序对比变换器”(AMCT)框架,其用对比学习来发现各个级别的关键形态,从基本元素到复杂结构。在本文中,我们将继续利用 MQL5 实现 AMCT 方式。
交易中的神经网络:使用小波变换和多任务注意力的模型
我们邀请您探索一个结合小波变换和多任务自注意力模型的框架,旨在提高波动市场条件下预测的响应能力、和准确性。小波变换可将资产回报分解为高频和低频,精心捕捉长期市场趋势、和短期波动。
您应当知道的 MQL5 向导技术(第 12 部分):牛顿多项式
牛顿多项式,其依据一组少量点创建二次方程,是一种古老但有趣的时间序列观察方式。在本文中,我们尝试探讨这种方式在哪些方面对交易者有用,并解决其局限性。
您应当知道的 MQL5 向导技术(第 08 部分):感知器
感知器,单隐藏层网络,对于任何精熟基本自动交易,并希望涉足神经网络的人来说都是一个很好的切入点。我们查看这是如何在一个信号类当中一步一步组装实现的,其是 MQL5 向导类中用于智能交易系统的部分。