将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(二)-LoRA-调优
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
价格行为分析工具包开发(第10部分):外部资金流(二)VWAP
通过我们的综合指南,掌握VWAP的强大力量!学习如何使用MQL5和Python将VWAP分析集成到您的交易策略中。最大化您的市场洞察力,并改善您今天的交易决策。
价格行为分析工具包开发(第六部分):均值回归信号捕捉器
有些概念乍一看似乎简单明了,但在实际操作中的实现却颇具挑战。在接下来的文章中,将带您了解我们创新性地自动化一款运用均值回归策略分析市场的智能交易系统(EA)的方法。与我们一同揭开这一激动人心的自动化过程的神秘面纱吧。
软件开发和 MQL5 中的设计范式(第一部分):创建范式
有一些方法可以用来解决许多重复性的问题。一旦明白如何运用这些方法,就可助您有效地创建软件,并贯彻 DRY(不要重复自己)的概念。在这种境况下,设计范式的主题就非常好用,因为它们为恰当描述过,且重复的问题提供了解决方案。
基于交易量的神经网络分析:未来趋势的关键
本文探讨了通过将技术分析原理与 LSTM 神经网络架构相结合,基于交易量分析来改进价格预测准确性的可能性。文章特别关注异常交易量的检测与解读、聚类方法的使用,以及基于交易量的特征创建及其在机器学习背景下的定义。
创建 MQL5-Telegram 集成 EA 交易 (第一部分):从 MQL5 发送消息到 Telegram
在本文中,我们在 MQL5 中创建一个 EA 交易,以使用机器人向 Telegram 发送消息。我们设置必要的参数,包括机器人的 API 令牌和聊天 ID,然后通过执行 HTTP POST 请求来传递消息。之后,我们将处理响应以确保成功传达,并排除故障时出现的任何问题。这确保我们能够通过创建的机器人将消息从 MQL5 发送到 Telegram。
开发多币种 EA 交易(第 19 部分):创建用 Python 实现的阶段
到目前为止,我们已经探讨了仅在标准策略测试器中启动顺序程序以优化 EA 的自动化。但是,如果我们想在两次启动之间使用其他方法对获得的数据进行一些处理呢?我们将尝试添加创建由用 Python 编写的程序执行的新优化阶段的功能。
基于LSTM的趋势预测在趋势跟踪策略中的应用
长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),其设计初衷是通过有效捕捉数据中的长期依赖关系,并解决传统RNN存在的梯度消失问题,从而实现对时序数据的高效建模。本文将系统阐述如何利用LSTM进行未来趋势预测,进而提升趋势跟踪策略的实战表现。具体内容涵盖这些模块:LSTM关键概念介绍与发展契机、从MetaTrader 5平台提取数据、在Python中构建并训练模型、将机器学习模型嵌入MQL5中、基于统计回测的结果分析与改进方向。
使用Python和MQL5进行多品种分析(第三部分):三角汇率
交易者常常因虚假信号而面临资金回撤,而等待确认信号又可能导致错失交易机会。本文介绍了一种三角交易策略,该策略利用白银兑美元(XAGUSD)和白银兑欧元(XAGEUR)的价格,以及欧元兑美元(EURUSD)的汇率,来过滤市场噪音。通过利用跨市场关系,交易者可以揭示隐藏的市场情绪,并实时优化交易入场点。
价格行为分析工具包开发(第 17 部分):TrendLoom EA 工具
作为一名价格行为的观察者和交易者,我注意到当一个趋势得到多个时间周期的确认时,它通常会朝着该方向延续。可能不同的是趋势持续的时间,而这取决于您是哪种类型的交易者,无论是长期持仓还是从事剥头皮交易。您为确认所选的时间周期起着至关重要的作用。读这篇文章,了解一个快速、自动化的系统,只需点击一下按钮或通过定期更新,就能帮助您分析不同时间周期的整体趋势。
神经网络变得简单(第 76 部分):配合多未来变换器探索不同的交互形态
本文继续探讨预测即将到来的价格走势的主题。我邀请您领略多未来变换器架构。其主要思路是把未来的多模态分布分解为若干个单模态分布,这样就可以有效地模拟场景中个体之间互动的各种模态。
开发回放系统 — 市场模拟(第 20 部分):外汇(I)
本文的最初目标不是涵盖外汇交易的所有可能性,而更是出于适配系统,如此您就至少可以执行一次市场回放。我们把模拟留待其它时刻。不过,如果我们没有跳价而仅有柱线的话,稍加努力,我们就可以模拟外汇市场中可能发生的交易。直到我们研究如何适配模拟器之前,情况一直如此。不经修改就尝试在系统内处理外汇数据会导致一系列错误。
克服集成ONNX(Open Neural Network Exchange )的挑战
ONNX是集成不同平台间复杂AI代码的强大工具,尽管它非常出色,但要想充分发挥其作用,就必须解决一些伴随而来的挑战。在本文中,我们将讨论您可能会遇到的一些常见问题,以及如何处理这些问题。
交易中的神经网络:将全局信息注入独立通道(InjectTST)
大多数现代多模态时间序列预测方法都采用了独立通道方式。这忽略了同一时间序列不同通道的天然依赖性。巧妙地运用两种方式(独立通道和混合通道),是提高模型性能的关键。
神经网络变得简单(第 56 部分):利用核范数推动研究
强化学习中的环境研究是一个紧迫的问题。我们之前已视察过一些方式。在本文中,我们将讲述另一种基于最大化核范数的方法。它允许智能体识别拥有高度新颖性和多样性的环境状态。
价格行为分析工具包开发(第五部分):波动率导航智能交易系统(Volatility Navigator EA)
判断市场方向或许相对简单,但把握入场时机却颇具挑战。作为“价格行为分析工具包开发”系列文章的一部分,我很高兴再为大家介绍一款能够提供入场点、止盈水平和止损设置位置的工具。为实现这一目标,我们采用了MQL5编程语言。让我们在本文中深入探讨每一步。
在MQL5中自动化交易策略(第5部分):开发自适应交叉RSI交易套件策略
在本文中,我们开发了自适应交叉RSI交易套件系统。该系统使用周期为14和50的移动平均线交叉来产生信号,并由一个周期为14的RSI过滤器进行确认。该系统包含一个交易日过滤器、带注释的信号箭头,以及一个用于监控的实时仪表盘。
这种方法确保了自动化交易中的精确性和适应性。
开发多币种 EA 交易 (第 10 部分):从字符串创建对象
EA 开发计划包括几个阶段,中间结果保存在数据库中,它们只能作为字符串或数字而不是对象再次从那里读取。因此,我们需要一种方法来根据从数据库读取的字符串重新创建 EA 中的所需对象。
创建一个基于日波动区间突破策略的 MQL5 EA
在本文中,我们将创建一个基于日波动区间突破策略的 MQL5 EA。我们阐述该策略的关键概念,设计EA框架蓝图,并在 MQL5 语言中实现突破策略逻辑。最后,我们将探讨用于回测和优化EA的技术,以最大限度地提高其有效性。
交易中的神经网络:具有层化记忆的智代(终篇)
我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。
MQL5中的范畴论(第18部分):自然性四边形
本文通过介绍自然变换这一主题中的一个关键支柱,继续我们的范畴理论系列。我们研究看似复杂的定义,然后深入研究本系列“面包和黄油”的示例和应用程序;波动性预测。
开发回放系统 — 市场模拟(第 17 部分):跳价和更多跳价(I)
于此,我们将见识到如何实现一些非常有趣的东西,但同时也会因某些可能十分令人困惑的关键点而极其困难。可能发生的最糟糕的事情是,一些自诩专业人士的交易者却对这些概念在资本市场中的重要性一无所知。好吧,尽管我们在这里专注于编程,但理解市场交易中涉及的一些问题,对于我们将要实现的内容至关重要。
开发回放系统 — 市场模拟(第 19 部分):必要的调整
在此,我们要做好准备,如此当我们需要往代码里添加新函数时,就能顺滑轻松地发生。当前代码还不能涵盖或处理那些显著推进过程所必需的事情。我们需要将所有东西都结构化,以便能够以最小的工作量实现某些事情。如果我们正确地做好所有事情,我们就能得到一个真正通用的系统,可以轻松地适应任何需要处理的状况。
创建 MQL5-Telegram 集成 EA 交易(第 6 部分):添加响应式内联按钮
在本文中,我们将交互式内联按钮集成到 MQL5 EA 交易中,允许通过 Telegram 进行实时控制。每次按下按钮都会触发特定的操作,并将响应发送回用户。我们还模块化了函数,以便有效地处理 Telegram 消息和回调查询。
价格行为分析工具包开发(第十五部分):引入四分位理论(1)——四分位绘图脚本
支撑位与阻力位是预示潜在趋势反转和延续的关键价位。尽管识别这些价位颇具挑战性,但一旦精准定位,您便能从容应对市场波动。如需进一步辅助,请参阅本文介绍的四分位绘图工具,该工具可帮助您识别主要及次要支撑位与阻力位。
使用MQL5经济日历进行交易(第一部分):精通MQL5经济日历的功能
在本文中,我们首先要了解其核心功能,探讨如何使用MQL5经济日历进行交易。然后,我们在MQL5中实现经济日历的关键功能,以提取与交易决策相关的新闻数据。最后,我们进行总结,展示如何利用这些信息来有效增强交易策略。
在MQL5中创建交易管理员面板(第四部分):登录安全层
想象一下,一个恶意入侵者潜入了交易管理员房间,获取了用于向全球数百万交易者传递有价值信息的计算机和管理员面板的访问权限。这种入侵可能导致灾难性后果,例如未经授权发送误导性信息或随意点击按钮触发意外操作。在本次讨论中,我们将探究MQL5中的安全措施以及在管理员面板中实施的新安全功能,以防范这些威胁。通过增强安全协议,我们旨在保护通信渠道并维护全球交易社区的可信度。在本文的讨论中了解更多见解。
软件开发和 MQL5 中的设计范式(第 4 部分):行为范式 2
在本文中,我们将终结有关设计范式主题的系列文章,我们提到有三种类型的设计范式:创建型、结构型、和行为型。我们将终结行为类型的其余范式,其可以帮助设置对象之间的交互方法,令我们的代码更整洁。
开发先进的 ICT 交易系统:在订单块指标中实现信号
在本文中,您将学习如何基于订单簿交易量(市场深度)开发订单块(Order Blocks)指标,并使用缓冲区对其进行优化以提高准确性。这结束了项目的当前阶段,并为下一阶段做准备,下一阶段将包括实施风险管理类和使用指标生成的信号的交易机器人。
开发回放系统(第 53 部分):事情变得复杂(五)
在本文中,我们将介绍一个很少有人了解的重要话题:定制事件。危险。这些要素的优缺点。对于希望成为 MQL5 或其他语言专业程序员的人来说,本主题至关重要。在此,我们将重点介绍 MQL5 和 MetaTrader 5。
开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择
让我们继续将之前手动执行的步骤自动化。这一次,我们将回到第二阶段的自动化,即选择交易策略的最佳单实例组,并补充考虑远期实例结果的能力。
MQL5 交易工具包(第 3 部分):开发挂单管理 EX5 库
了解如何在 MQL5 代码或项目中开发和实现全面的挂单 EX5库。本文将向您展示如何创建一个全面的挂单管理 EX5 库,并通过构建交易面板或图形用户界面(GUI)来指导您导入和实现它。EA 交易订单面板将允许用户直接从图表窗口上的图形界面打开、监控和删除与指定幻数相关的挂单。
MQL5自动化交易策略(第二部分):基于一目均衡表与动量震荡器的云突破交易系统
在本文中,我们将创建一个智能交易系统(EA),利用一目均衡表指标与动量震荡器,实现云图突破策略的自动化交易。我们将逐步解析以下核心流程:指标句柄初始化、突破条件检测和自动化交易执行。此外,我们还实现追踪止损机制与动态仓位管理,以提升EA的盈利能力及对市场波动的适应性。
MetaTrader 中的 Multibot(第二部分):改进的动态模板
在开发上一篇文章的主题时,我决定创建一个更灵活、功能更强大的模板,该模板具有更大的功能,可以有效地用于自由职业,也可以作为开发多货币和多时段 EA 的基础,并能够与外部解决方案集成。
MQL5 中的范畴论 (第 12 部分):秩序(Orders)
本文是范畴论系列文章之以 MQL5 实现图论的部分,深入研讨秩序(Orders)。我们通过研究两种主要的秩序类型,实测秩序论的概念如何支持幺半群集合,从而为交易决策提供信息。
让新闻交易轻松上手(第六部分):执行交易(3)
在本文中,将实现基于新闻事件ID对单个新闻事件进行新闻筛选。此外,还将对先前的SQL查询进行改进,以提供更多信息或减少查询运行时间。另外,还将使前几篇文章中构建的代码具备实际功能。
重构经典策略(第十三部分):最小化均线交叉的滞后性
在我们交易者社区中,均线交叉策略已是广为人知,然而,自该策略诞生以来,其核心思想却几乎一成未变。在本次讨论中,我们将为您呈现对原策略的一项微调,其目的在于最小化该交易策略中存在的滞后性。所有原策略的爱好者们,不妨根据我们今天将要探讨的见解,来重新审视并改进这一策略。通过使用两条周期相同的移动平均线,我们可以在不违背策略基本原则的前提下,显著减少交易策略的滞后。