日内交易:拉里·康纳斯(Larry Connors)RSI2均值回归策略
拉里·康纳斯(Larry Connors)是知名交易员与量化交易领域权威作家,其最著名的成果之一是2周期相对强弱指数(RSI2)策略。该指标通过捕捉短期超买超卖信号,辅助判断市场反转时机。在本文中,我们将首先阐述研究契机,随后在MQL5中复现康纳斯的三大经典策略,并应用于标普500指数差价合约(CFD)的日内交易场景。
开发回放系统 — 市场模拟(第 23 部分):外汇(IV)
现在,创建发生在我们将跳价转换为柱线的同一点。以这种方式,如果在转换过程中出现问题,我们就能立即注意到错误。这是因为在快进期间,在图表上放置 1-分钟柱线的代码,也同样在正常表现期间用于定位系统放置柱线。换言之,负责此任务的代码不会在其它任何地方重复。如此这般,我们获得的系统就能更好的维护和改进。
MQL5自动化交易策略(第十一部分):开发多层级网格交易系统
在本文中,我们将使用MQL5开发一款多层级网格交易系统EA,重点探讨网格交易策略背后的架构与算法设计。我们将研究多层网格逻辑的实现方式以及应对不同市场状况的风险管理技术。最后,我们将提供详尽的解释和实用技巧,指导您完成自动化交易系统的构建、测试与优化。
您应该知道的 MQL5 向导技术(第 03 部分):香农(Shannon)熵
今天的交易者都是哲学家,几乎总是在寻找新的想法,尝试提炼它们,选择修改或丢弃它们:一个探索性的过程,肯定会花费相当的勤奋程度。 本系列文章将提出,MQL5 向导应该是交易者的支柱。
您应该知道的 MQL5 向导技术(第 04 部分):线性判别分析
今天的交易者都是哲学家,几乎总是在寻找新的想法,尝试提炼它们,选择修改或丢弃它们:一个探索性的过程,肯定会花费相当的勤奋程度。 这些系列文章将提出 MQL5 向导应该是交易者在此领域努力的中流砥柱。
威廉·江恩(William Gann)方法(第二部分):创建江恩宫格指标
我们将基于“江恩九宫格”创建一个指标,该指标通过时间和价格方格构建而成。我们将提供指标代码,并在平台上针对不同的时间区间,对该指标进行测试。
逆公允价值缺口(IFVG)交易策略
当价格回到先前确定的公允价值缺口位置,且未表现出预期的支撑或阻力反应,而是无视该缺口时,便出现了逆公允价值缺口(IFVG)。这种“无视”现象可能预示着市场方向的潜在转变,并为反向交易提供优势。在本文中,我将介绍自己开发的量化方法,以及如何将IFVG作为一种策略,应用于MetaTrader 5智能交易系统(EA)中。
构建K线图趋势约束模型(第三部分):在使用该系统时检测趋势变化
本文探讨了经济新闻发布、投资者行为以及各种因素如何影响市场趋势的反转。文章包含一段视频解释,并接着将MQL5代码融入我们的程序中,以检测趋势反转、向我们发出警报,并根据市场条件采取相应行动。本文是在此前一系列文章基础上的扩展。
改编版 MQL5 网格对冲 EA(第 III 部分):优化简单对冲策略(I)
在第三部分中,我们重新审视了早前开发的简单对冲和简单网格智能系统(EA)。我们的重点转移到通过数学分析和蛮力方式完善简单对冲 EA,旨在实现最优策略用法。本文深入探讨了该策略的数学优化,为在日后文章中探索未来基于编码的优化奠定了基础。
构建K线趋势约束模型(第5部分):通知系统(第一部分)
我们将会把关键的MQL5代码分解成特定的代码段,以展示如何在本系列文章中创建的“趋势约束”指标中集成Telegram和WhatsApp来接收信号通知。这将帮助交易者,无论是新手还是经验丰富的开发者,都能更容易地理解这一概念。首先,我们将介绍MetaTrader 5的通知设置及其对用户的重要性。这将有助于开发者提前做好笔记,以便在他们的系统中做进一步应用。
MQL5 交易策略自动化(第十部分):开发趋势盘整动量策略
在本文中,我们将基于MQL5开发趋势盘整动量策略EA。我们将结合双移动平均线交叉与 RSI 和 CCI 动量过滤器来生成交易信号。我们还将对EA进行回测,以及为提升其在真实交易环境下的表现而进行的优化。
DoEasy 函数库中的时间序列(第五十六部分):自定义指标对象,从集合中的指标对象获取数据
本文研究在 EA 中创建自定义指标对象。 我们稍微改进一下库类,并添加一些方法,以便从 EA 中的指标对象获取数据。
了解 MQL5 面向对象编程(OOP)
作为开发人员,我们需要学习如何在创建和开发软件时,无需重复代码做到可重用、且灵活,尤其是当我们拥有不同行为的不同对象时。这可以利用面向对象的编程技术和原则来顺滑地达到。在本文中,我们将介绍 MQL5 面向对象编程的基础知识,以便了解如何在我们的软件中利用这一关键主题的原则和实践。
MQL5 交易工具包(第 1 部分):开发仓位管理 EX5 库
了解如何创建面向开发人员的工具包,使用 MQL5 管理各种仓位操作。在本文中,我将演示如何创建一个函数库 (ex5),以执行从简单到高级的仓位管理操作,包括自动处理和报告使用 MQL5 处理仓位管理任务时出现的各种错误。
构建一个K线图趋势约束模型(第二部分):融合原生指标
这篇文章的重点在于如何利用MetaTrader 5的内置指标来甄别逆势信号。在上一篇文章的基础上,我们将进一步探讨如何使用MQL5代码将我们的想法最终用代码实现。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLMs 开发和测试交易策略(一)- 微调
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
通过配对交易中的均值回归进行统计套利:用数学战胜市场
本文描述了投资组合层面的统计套利基础知识。其目标是帮助没有深厚数学知识的读者理解统计套利的原则,并提出一个概念性的起点框架。文章包含一个可运行的智能交易系统(EA)、一些关于其一年回测的笔记,以及用于复现实验的相应回测配置设置(.ini 文件)。
开发回放系统 — 市场模拟(第 15 部分):模拟器的诞生(V)- 随机游走
在本文中,我们将完成自有系统模拟器的开发。 于此的主要目标是就上一篇文章中讨论的算法进项配置。 该算法旨在创建随机游走走势。 因此,为了明白今天的讲义,有必要了解以前文章的内容。 如果您尚未跟踪模拟器的开发,我建议您从头开始阅读本系列文章。 否则,您也许对此处将要讲解的内容不明所以。
开发回放系统(第32部分):订单系统(一)
在我们迄今为止开发的所有东西中,正如你可能会注意到并最终同意的那样,这个系统是最复杂的。现在我们需要做一些非常简单的事情:让我们的系统模拟交易服务器的操作。准确实现交易服务器操作方式似乎是一件轻而易举的事情。至少说起来是这样。但我们需要这样做,以便对回放/模拟系统的用户来说,一切都是无缝和透明的。
开发多币种 EA 交易(第 9 部分):收集单一交易策略实例的优化结果
让我们来概述一下 EA 开发的主要阶段。首先要做的一件事就是优化所开发交易策略的单个实例。让我们试着在一个地方收集优化过程中测试器通过的所有必要信息。
基于预测的统计套利
我们将探讨统计套利,使用Python搜索具有相关性和协整性的交易品种,为皮尔逊(Pearson)系数制作一个指标,并编制一个用于交易统计套利的EA,该系统将使用Python和ONNX模型进行预测。
在 MQL5 中自动化交易策略(第 13 部分):构建头肩形态交易算法
在本文中,我们将自动化 MQL5 中的头肩形态。我们分析其架构,实现一个用于检测和交易该形态的 EA,并对结果进行回测。这个过程揭示了一个具有改进空间的实用交易算法。
算法交易中的风险管理器
本文的目标是证明在算法交易中使用风险管理器的必要性,并在一个单独的类中实现控制风险的策略,以便每个人都可以验证标准化的风险管理方法在金融市场日内交易和投资中的有效性。在本文中,我们将为算法交易创建一个风险管理类。本文是上一篇文章的延续,在前文中我们讨论了为手动交易创建风险管理器。
暴力方式搜素形态(第 V 部分):全新视角
在这篇文章中,我将展示一种完全不同的方式进行算法交易,我经历了很长一段时间后才最终遇到它。当然,这一切所作所为全靠我的暴力程序,其经历了许多更改,令其能够并发解决若干问题。尽管如此,这篇文章明面上仍然比较笼统和尽可能简单,这就是为什么它也适合那些对暴力一无所知的人。
构建自优化型MQL5智能交易系统(EA)(第3部分):动态趋势跟踪与均值回归策略
金融市场通常被静态划分为震荡市或趋势市两种模式。这种简化分类虽便于短期交易决策。然而,却与真实市场行为脱节。在本文中,我们将深入探讨市场如何精准地在这两种模式间切换,并利用这方面的认知提升算法交易策略的可靠性。
您应该知道的 MQL5 向导技术(第 02 部分):Kohonen 映射
这些系列文章所提议的是,MQL5 向导应作为交易员的支柱。 为什么呢? 因为交易员不仅可以利用 MQL5 向导装配他的新想法来节省时间,还可以大大减少重复编码带来的错误;他最终可把精力投向自我交易哲学中的几个关键领域。
开发多币种 EA 交易 (第 11 部分):自动化优化(第一步)
为了获得一个好的 EA,我们需要为它选择多组好的交易策略实例参数。这可以通过对不同的交易品种运行优化然后选择最佳结果来手动完成。但最好将这项工作委托给程序,并从事更有成效的活动。
神经网络变得简单(第 66 部分):离线学习中的探索问题
使用准备好的训练数据集中的数据对模型进行离线训练,这种方法虽然有一定的优势,但其不利的一面是,环境信息被大大压缩到训练数据集的大小。这反过来又限制了探索的可能性。在本文中,我们将探讨一种方法,这种方法可以用尽可能多样化的数据来填充训练数据集。
构建K线图趋势约束模型(第8部分):EA的开发(一)
在本文中,我们将基于前文创建的指标,开发我们的第一个由MQL5语言编写的EA。我们将涵盖实现自动化交易所需的所有功能,包括风险管理。这将极大地帮助用户从手动交易转变为自动化交易系统。
创建一个基于布林带PIRANHA策略的MQL5 EA
在本文中,我们将创建一个MQL5 EA,它基于PIRANHA策略,并使用布林带来提升交易表现。我们会系统梳理该策略的核心原理、代码实现细节,以及测试与优化方法。并助您轻松将 EA 部署到实际的交易环境中。
通过应用程序了解MQL5中的函数
函数在任何编程语言中都是至关重要的东西,它有助于开发人员应用(DRY)的概念,这意味着不要重复自己,还有许多其他好处。在本文中,您将找到更多关于函数的信息,以及我们如何使用简单的应用程序在MQL5中创建自己的函数,这些应用程序可以在任何系统中使用或调用。您必须在不使事情复杂化的情况下丰富您的交易系统。
开发先进的 ICT 交易系统:在指标中实现订单区块
在本文中,我们将学习如何创建一个指标来检测、绘制订单区块并提醒订单块的缓解。我们还将详细研究如何在图表上识别这些区块,设置准确的提醒,并使用矩形可视化它们的位置,以更好地了解价格行为。该指标将成为遵循聪明钱概念和内圈交易者(ICT,Inner Circle Trader)方法的交易者的关键工具。