MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
在 MQL5 中自动化交易策略(第三部分):用于动态交易管理的RSI区域反转系统
在本文中,我们将在MQL5中创建一个基于RSI区域反转策略的EA系统,该系统使用RSI信号来触发交易,并采用反转策略来管理亏损。我们实现了一个“ZoneRecovery”类,用以自动化交易入场、反转逻辑和仓位管理。文章最后将进行系统的回测,以优化性能并提升 EA 的有效性。
MQL5自动化交易策略(第九部分):构建亚洲盘突破策略的智能交易系统(EA)
在本文中,我们将在MQL5中开发一款适用于亚洲盘突破策略的智能交易系统(EA),用来计算亚洲时段的高低价以及使用移动平均线(MA)进行趋势过滤。同时实现动态对象样式、用户自定义时间输入和完善的风险管理。最后演示回测与优化技术,进一步打磨策略表现。
神经网络变得轻松(第五十四部分):利用随机编码器(RE3)进行高效研究
无论何时我们研究强化学习方法时,我们都会面对有效探索环境的问题。解决这个问题通常会导致算法更复杂性,以及训练额外模型。在本文中,我们将看看解决此问题的替代方法。
MQL5 中的高级变量和数据类型
不仅在 MQL5 编程中,在任何编程语言中,变量和数据类型都是非常重要的主题。MQL5 变量和数据类型可分为简单类型和高级类型。在这篇文章中,我们将识别并学习高级类型,因为我们在前一篇文章中已经提到过简单类型。
神经网络变得轻松(第五十二部分):研究乐观情绪和分布校正
由于模型是基于经验复现缓冲区进行训练,故当前的扮演者政策会越来越远离存储的样本,这会降低整个模型的训练效率。在本文中,我们将查看一些能在强化学习算法中提升样本使用效率的算法。
神经网络变得简单(第 92 部分):频域和时域中的自适应预测
FreDF 方法的作者通过实验证实了结合频域和时域进行预测的优势。不过,权重超参数的使用对于非稳态时间序列并非最优。在本文中,我们将领略结合频域和时域预测的自适应方法。
风险管理(第二部分):在图形界面中实现手数计算
在本文中,我们将探讨如何使用强大的 MQL5 图形控件库来改进和更有效地应用上一篇文章中提出的概念。我们将逐步完成创建一个功能齐全的图形用户界面。我将解释它背后的想法,以及所使用的每种方法的目的和操作。此外,在本文的最后,我们将测试我们创建的面板,以确保它正确运行并实现其既定目标。
神经网络变得简单(第 89 部分):频率增强分解变换器(FEDformer)
到目前为止,我们研究过的所有模型在分析环境状态时都将其当作时间序列。不过,时间序列也能以频率特征的形式表示。在本文中,我将向您介绍一种算法,即利用时间序列的频率分量来预测未来状态。
纳什博弈论与隐马尔可夫滤模型在交易中的应用
这篇文章深入探讨了约翰·纳什的博弈论,特别是纳什均衡,在交易中的应用。文章讨论了交易者如何利用Python脚本和MetaTrader 5,依据纳什的原则来识别并利用市场的无效性。文章还提供了实施这些策略的逐步指南,包括使用隐马尔可夫模型(HMM)和统计分析,以提升交易表现。
MQL5交易策略自动化(第八部分):构建基于蝴蝶谐波形态的智能交易系统(EA)
在本文中,我们将构建一个MQL5智能交易系统(EA),用于检测蝴蝶谐波形态。我们会识别关键转折点,并验证斐波那契(Fibonacci)水平以确认该形态。之后,我们会在图表上可视化该形态,并在得到确认时自动执行交易。
构建K线图趋势约束模型(第一部分):针对EA和技术指标
本文面向初学者和专业的MQL5开发者。它提供了一段代码,用于定义并限制信号生成指标仅在较长的时间框架的趋势中运行。通过这种方式,交易者可以通过融入更广泛的市场视角来增强他们的策略,从而可能产生更稳健和可靠的交易信号。
利用 Python 实现价格走势离散方法
我们将考察使用 Python + MQL5 来离散价格的方法。在本文中,我将分享我开发 Python 函数库的实践经验,其以多种方式实现柱线形成 — 从经典的交易量和范围柱线,到更奇特的方法,如 Renko 和 Kagi。我们将研究三线突破蜡烛和范围柱线,分析它们的统计数据,并尝试定义如何将价格以离散化表示。
在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法
在本文中,我们将在MQL5中开发一个快速交易EA,利用抛物线SAR和简单移动平均线(SMA)指标来创建一个响应迅速的交易策略。我们详细介绍了该策略的实施过程,包括指标的使用、信号的生成以及测试和优化过程。
MQL5自动化交易策略(第十四部分):基于MACD-RSI统计方法的交易分层策略
本文将介绍一种结合MACD和RSI指标与统计方法的交易分层策略,通过MQL5实现动态自动化交易。我们将探讨这种级联式策略的架构设计,通过关键代码段详解其实现方式,并指导读者如何进行回测以优化策略表现。最后,我们将总结该策略的潜力,并为自动化交易的进一步优化奠定基础。
神经网络变得简单(第 62 部分):在层次化模型中运用决策转换器
在最近的文章中,我们已看到了运用决策转换器方法的若干选项。该方法不仅可以分析当前状态,还可以分析先前状态的轨迹,以及在其中执行的动作。在本文中,我们将专注于在层次化模型中运用该方法。
软件开发和 MQL5 中的设计模式(第 2 部分):结构模式
在了解了设计模式适用于 MQL5 和其他编程语言,并且对于开发人员开发可扩展、可靠的应用程序有多么重要之后,我们将在本文中继续介绍设计模式。我们将学习另一种类型的设计模式,即结构模式,了解如何利用我们所拥有的类组成更大的结构来设计系统。
利用 MQL5 的交互式 GUI 改进您的交易图表(第 II 部分):可移动 GUI(II)
依靠我们的以 MQL5 创建可移动 GUI 的深度指南,在您的交易策略和实用程序中解锁动态数据表达的潜力。深入研究面向对象编程的基本原理,并探索如何在同一图表上轻松高效地设计和实现单个或多个可移动 GUI。
数据科学和机器学习(第 16 部分):全新面貌的决策树
在我们的数据科学和机器学习系列的最新一期中,深入到错综复杂的决策树世界。本文专为寻求策略洞察的交易者量身定制,全面回顾了决策树在分析市场趋势中所发挥的强大作用。探索这些算法树的根和分支,解锁它们的潜力,从而强化您的交易决策。加入我们,以全新的视角审视决策树,并探索它们如何在复杂的金融市场航行中成为您的盟友。
价格行为分析工具包开发(第12部分):外部资金流(3)趋势图谱(TrendMap)
市场走势由多头与空头之间的力量博弈所决定。由于作用在这些水平上的力量,市场会尊重某些特定价位水平。斐波那契(Fibonacci)水平和成交量加权平均价(VWAP)水平在影响市场行为方面尤为强大。请随我一同探讨本文中基于VWAP和斐波那契水平生成交易信号的策略。
神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法
据前几篇文章中所执行测试的结果,我们得出的结论是,训练策略的最优性很大程度上取决于所采用的训练集。在本文中,我们将熟悉一种相当简单,但有效的方法来选择轨迹,并据其训练模型。
在 MQL5 中创建交互式图形用户界面(第 2 部分):添加控制和响应
通过动态功能增强 MQL5 图形用户界面(GUI)面板,可以大大改善用户的交易体验。通过整合互动元素、悬停效果和实时数据更新,该面板成为现代交易者的强大工具。
如何使用MQL5的控件类创建交互式仪表板/面板(第一部分):设置面板
在本文中,我们将使用MQL5的控件类创建一个交互式交易仪表板,旨在简化交易操作。该面板包含标题、用于交易、平仓和信息的导航按钮,以及用于执行交易和管理仓位的专用操作按钮。到文章结束时,你将拥有一个基础面板,为未来的扩展做好准备。
用Python重塑经典策略:移动平均线交叉
在本文中,我们重新审视了经典的移动平均线交叉策略,以评估其当前的有效性。鉴于该策略自诞生以来已经过去了很长时间,我们探索了人工智能可能为其带来的潜在增强效果。通过融入人工智能技术,我们旨在利用高级的预测能力来潜在地优化交易的入场和出场点,适应不断变化的市场条件,并与传统方法相比提高整体表现。
MQL5 中的范畴论 (第 8 部分):幺半群(Monoids)
本文是以 MQL5 实现范畴论系列的延续。 本期,我们引入幺半群作为域(集合),通过包含规则和幺元,将范畴论自其它数据分类方法分离开来。
神经网络变得简单(第 68 部分):离线优先引导政策优化
自从第一篇专门讨论强化学习的文章以来,我们以某种方式触及了 2 个问题:探索环境和检定奖励函数。最近的文章曾专门讨论了离线学习中的探索问题。在本文中,我想向您介绍一种算法,其作者完全剔除了奖励函数。