有关MQL5交易系统自动化的文章

icon

阅读 交易系统 文章,拓宽核心思路。了解如何使用蜡烛条图表的统计方法和形态,如何过滤信号以及何处使用信号机指标。

该 MQL5 向导将帮助您 创建无需编程的机器人 以便快速检验您的交易思路。使用向导来学习有关的 遗传算法

添加一个新的文章
最近 | 最佳
了解如何设计基于轨道线(Envelopes)的交易系统
了解如何设计基于轨道线(Envelopes)的交易系统

了解如何设计基于轨道线(Envelopes)的交易系统

在本文中,我将与您分享一种如何进行波带交易的方法。 这一次,我们将研究轨道线(Envelopes),并将看到创建一款基于轨道线的策略是多么容易。
preview
神经网络实验(第 1 部分):重温几何学

神经网络实验(第 1 部分):重温几何学

在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。
使用 DeMark Sequential 和 Murray-Gann 水平分析图表
使用 DeMark Sequential 和 Murray-Gann 水平分析图表

使用 DeMark Sequential 和 Murray-Gann 水平分析图表

Thomas DeMark Sequential (序列)擅长显示价格变动的平衡变化。如果我们把它的信号与水平指标例如 Murray 水平相结合,就更为明显。这篇文章主要是为初学者和那些仍然找不到他们的“圣杯”。我还将展示一些我在其他论坛上没有看到的构建水平的功能。因此,这篇文章可能对高级交易者也很有用。欢迎提出建议和合理批评。
preview
简单均值回归交易策略

简单均值回归交易策略

均值回归是一种逆势交易,交易者预估价格将返回到某种形式的均衡点位,通常依据均值或其它向心趋势统计值来衡量。
预测市场价格的通用回归模型(二):自然、技术和社会暂态函数
预测市场价格的通用回归模型(二):自然、技术和社会暂态函数

预测市场价格的通用回归模型(二):自然、技术和社会暂态函数

本文是前一篇文章的逻辑延续。 它彰显一个事实,即确认第一篇文章的结论。 这些事实在该书出版后的十年内就得以显露。 它们围绕着三个检测到的描述市场价格变化形态的动态暂态函数展开。
preview
在莫斯科交易所(MOEX)里使用限价订单进行自动网格交易

在莫斯科交易所(MOEX)里使用限价订单进行自动网格交易

本文研究针对 MetaTrader 5 平台开发 MQL5 智能交易系统(EA),旨在能在 MOEX 上操作。 该 EA 采用网格策略,面向 MetaTrader 5 终端,并在 MOEX 上进行交易。 EA 包括了依据止损和止盈平仓,以及在某些市场条件下取消挂单。
preview
构建自动运行的 EA(第 08 部分):OnTradeTransaction

构建自动运行的 EA(第 08 部分):OnTradeTransaction

在本文中,我们将目睹如何利用事件处理系统快速有效地处理与订单系统相关的问题。 配合这个系统,EA 就能更快地工作,如此它就不必持续不断地搜索所需的数据。
使用TesterWithdrawal() 函数模拟利润提取
使用TesterWithdrawal() 函数模拟利润提取

使用TesterWithdrawal() 函数模拟利润提取

本文讲述的是用于交易系统风险评估的TesterWithDrawal()函数的用法,即运行期间提取一部分资产。此外,还会讲到此函数对于策略测试程序中资产净值减少的计算算法的作用。在优化您的EA交易的时候,就会用到此函数。
preview
构建自动运行的 EA(第 12 部分):自动化(IV)

构建自动运行的 EA(第 12 部分):自动化(IV)

如果您认为自动化系统很简单,那么您可能并未完全理解创建它们需要什么。 在本文中,我们将谈谈杀死大量智能系统的问题。 不分青红皂白地触发订单是解决这个问题的可能方法。
preview
掌握市场动态:创建有关支撑与阻力位策略的EA

掌握市场动态:创建有关支撑与阻力位策略的EA

一个关于基于支撑位与阻力位策略开发自动化交易算法的全面指南。详细介绍了在MQL5中创建EA以及在MetaTrader 5中对其进行测试的所有方面——从分析价格区间行为到风险管理。
preview
改编版 MQL5 网格对冲 EA(第 II 部分):制作一款简单的网格 EA

改编版 MQL5 网格对冲 EA(第 II 部分):制作一款简单的网格 EA

在本文中,我们探讨了经典的网格策略,详解 MQL5 的智能交易系统的自动化,并初步分析回测结果。我们强调了该策略对高持有能力的需求,并概括了在未来分期分批优化距离、止盈和手数等关键参数的计划。该系列旨在提高交易策略效率,以及针对不同市场条件的适配性。
工作必须继续,再次讨论锯齿形调整浪
工作必须继续,再次讨论锯齿形调整浪

工作必须继续,再次讨论锯齿形调整浪

关于一个显而易见但仍不合标准的锯齿形调整浪构成方法,以及其所产生的结果:多帧分形锯齿形调整浪指标,它表示在单个工作时间范围 (TF) 上基于三个较大波动所构建的锯齿形调整浪。在整个过程中,较大的 TF 的时间范围可能也不符合标准,介于 M5 到 MN1 之间。
preview
一步步学习如何利用公允价值缺口(FVG)或市场不平衡性来交易的策略:一种“聪明资金”的交易方法

一步步学习如何利用公允价值缺口(FVG)或市场不平衡性来交易的策略:一种“聪明资金”的交易方法

基于公允价值缺口(FVG)交易策略的MQL5自动化交易算法创建与分步实施指南。这一教程旨在为无论是初学者还是经验丰富的交易者提供一个实用的EA创建指南。
preview
数据科学与机器学习(第 11 部分):朴素贝叶斯(Bayes),交易中的概率论

数据科学与机器学习(第 11 部分):朴素贝叶斯(Bayes),交易中的概率论

概率交易就像走钢丝一样 — 它需要精确、平衡和对风险的敏锐理解。 在交易世界中,概率就是一切。 这是成功与失败、盈利与亏损的区别。 通过利用概率的力量,交易者可以做出明智的决策,有效地管理风险,并实现他们的财务目标。 故此,无论您是经验丰富的投资者还是交易新手,了解概率都是解锁您的交易潜能的关键。 在本文中,我们将探索令人兴奋的概率交易世界,并向您展示如何将您的交易博弈提升到一个新的水平。
preview
如何利用 MQL5 创建自定义指标(Heiken Ashi)

如何利用 MQL5 创建自定义指标(Heiken Ashi)

在本文中,我们将学习如何根据我们的偏好利用 MQL5 创建自定义指标,在 MetaTrader 5 当中运用它来帮助我们读取图表,或在自动智能系统当中运用。
preview
如何利用 MQL5 处理指示线

如何利用 MQL5 处理指示线

在本文中,您将发现利用 MQL5 处理最重要的指示线(如趋势线、支撑线和阻力线)的方法。
preview
从市场里选择智能交易系统的正确途径

从市场里选择智能交易系统的正确途径

在本文中,我们将研究购买智能交易系统时应该注意的一些要点。 我们还将寻求提升盈利的方法,从而明智地花钱,并从付出中获取盈利。 此外,读完本文之后,您会发现,即便使用简单免费的产品也有可能赚到钱。
preview
学习如何基于鳄嘴(Gator)振荡器设计交易系统

学习如何基于鳄嘴(Gator)振荡器设计交易系统

这是我们关于学习如何基于流行技术指标设计交易系统系列的一篇新文章,将介绍鳄嘴(Gator)振荡器技术指标,以及如何通过简单的策略创建交易系统。
preview
复购算法:提高效率的数学模型

复购算法:提高效率的数学模型

在本文中,我们将使用复购算法来更深入地了解交易系统的效率,并开始研究使用数学和逻辑提高交易效率的一般原则,以及在使用任意交易系统方面应用更能提高效率的非标准方法。
基于大众交易系统和交易机器人优化点金术的 Expert Advisor(续)
基于大众交易系统和交易机器人优化点金术的 Expert Advisor(续)

基于大众交易系统和交易机器人优化点金术的 Expert Advisor(续)

在本文中,作者继续分析最简单的交易系统的实现算法,并介绍以图表方式将回溯测试中的优化结果记录到一个 html 文件中。本文对于交易新手和 EA 编写新手很有帮助。
在交易中应用 OLAP(第 3 部分):为开发交易策略而分析报价
在交易中应用 OLAP(第 3 部分):为开发交易策略而分析报价

在交易中应用 OLAP(第 3 部分):为开发交易策略而分析报价

在本文中,我们将继续研讨在交易中运用 OLAP 技术。 我们会扩展前两篇文章中表述的功能。 这次我们将研究报价的操盘分析。 我们还将基于所汇集的历史数据,推导并检验交易策略的设想。 本文推介了基于柱线形态研究和自适应交易的智能交易系统。
preview
神经网络实验(第 2 部分):智能神经网络优化

神经网络实验(第 2 部分):智能神经网络优化

在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。
preview
神经网络变得轻松(第二十七部分):深度 Q-学习(DQN)

神经网络变得轻松(第二十七部分):深度 Q-学习(DQN)

我们继续研究强化学习。 在本文中,我们将与深度 Q-学习方法打交道。 DeepMind 团队曾运用这种方法创建了一个模型,在玩 Atari 电脑游戏时其表现优于人类。 我认为评估该技术来解决交易问题的可能性将会很有益处。
preview
学习如何基于奥森姆(Awesome)振荡器设计交易系统

学习如何基于奥森姆(Awesome)振荡器设计交易系统

在我们系列的这篇新文章中,我们将学习一种也许对我们的交易有用的新技术工具。 它是奥森姆(Awesome)振荡器((AO)指标。 我们将学习如何基于该指标设计交易系统。
preview
学习如何基于 OBV 设计交易系统

学习如何基于 OBV 设计交易系统

这是一篇新文章,将针对初学者继续我们的系列,介绍如何基于一些流行指标设计交易系统。 我们将学习一个新的指标,即能量潮(OBV),我们将学习如何使用并基于它来设计交易系统。
最新的改革
最新的改革

最新的改革

看一看您的交易终端。您能看到哪些价格展示方式?柱、烛形图和线条。我们追求的是时间和价格,但却只能由价格获利。那么,分析市场时,我们能否只关注价格呢?本文会针对点数图("圈圈叉叉")提出一种算法和脚本 - 已将各种各样的价格模式考虑在内,而其实际应用亦于提供的建议中列出。
MetaTrader 4 与 MetaTrader 5 交易信号组件
MetaTrader 4 与 MetaTrader 5 交易信号组件

MetaTrader 4 与 MetaTrader 5 交易信号组件

MetaTrader 4 和 MetaTrader 5 用户最近得到了成为“信号提供方”并赚取更多收益的机会。现在,您可以利用新组件,在您的网站、博客或社交网络上展示您的成功交易了。使用组件的好处显而易见:它们会提高“信号提供方”的受欢迎程度、树立其作为成功交易者的声名,并吸引到新的“订阅者”。在其它网站上放置这些组件的所有交易者,也都享受到了上述好处。
preview
基于改进的十字星(Doji)烛条形态识别指标的交易策略

基于改进的十字星(Doji)烛条形态识别指标的交易策略

基于元柱线的指标比之传统指标,能检测到的蜡烛更多。 我们来检查一下这能否在自动交易中提供真正的益处。
preview
如何选择智能系统:拒绝一款交易机器人的 20 条强大准则

如何选择智能系统:拒绝一款交易机器人的 20 条强大准则

本文尝试回答这个问题:我们如何选择正确的智能系统? 哪些最适合我们的投资组合,我们如何过滤市场上提供的庞大交易机器人列表? 本文将介绍二十条明确而强大的准则来拒绝一款智能系统。 每条提出的准则都将得到很好的解释,从而帮助您做出更持久的决定,并为您建立一个更有前途的智能系统集合,从而赚取利润。
轻松快捷开发 MetaTrader 程序的函数库(第 二十三部分):基准交易类 - 基准类,有效参数验证
轻松快捷开发 MetaTrader 程序的函数库(第 二十三部分):基准交易类 - 基准类,有效参数验证

轻松快捷开发 MetaTrader 程序的函数库(第 二十三部分):基准交易类 - 基准类,有效参数验证

在本文中,我们继续开发交易类,实现错误交易订单参数值的监控,以及交易事件的语音。
preview
从头开始开发智能交易系统(第 20 部分):新订单系统 (III)

从头开始开发智能交易系统(第 20 部分):新订单系统 (III)

我们继续实现新的订单系统。 创建这样的一个系统需要熟练地掌握 MQL5,以及了解 MetaTrader 5 平台的实际工作方式,及其提供的资源。
preview
从头开始开发智能交易系统(第 26 部分):面向未来(I)

从头开始开发智能交易系统(第 26 部分):面向未来(I)

今天,我们将把我们的订单系统提升到一个新的层次。 但在此之前,我们需要解决少量问题。 我们现有的一些问题,是与在交易日里我们想要如何工作,以及我们做什么事情相关。
preview
模式搜索的暴力方法

模式搜索的暴力方法

在本文中,我们将搜索市场模式,根据确定的模式创建 EA 交易,并检查这些模式,如果它们保持有效的话,保持有效的时间有多少。
preview
神经网络变得轻松(第七部分):自适应优化方法

神经网络变得轻松(第七部分):自适应优化方法

在之前的文章中,我们利用随机梯度下降法针对网络中的所有神经元按照相同的学习率训练神经网络。 在本文中,我提议着眼于自适应学习方法,该方法能够改变每个神经元的学习率。 我们还将研究这种方法的利弊。
preview
学习如何基于比尔·威廉姆斯(Bill Williams)的 MFI 设计交易系统

学习如何基于比尔·威廉姆斯(Bill Williams)的 MFI 设计交易系统

这是该系列中的一篇新文章,我们将学习如何根据流行的技术指标设计交易系统。 这次我们将涵盖比尔·威廉姆斯(Bill Williams)的市场促进指数(BW MFI)。
preview
数据科学和机器学习(第 05 部分):决策树

数据科学和机器学习(第 05 部分):决策树

决策树模仿人类的方式针对数据进行分类。 我们看看如何构建这棵树,并利用它们来分类和预测一些数据。 决策树算法的主要目标是将含有杂质的数据分离成纯节点或靠近节点。
preview
直推和主动机器学习中的梯度提升

直推和主动机器学习中的梯度提升

在本文中,我们将探讨利用真实数据的主动机器学习方法,并讨论它们的优缺点。也许你会发现这些方法很有用,并将它们包含在你的机器学习模型库中。直推是由支持向量机(SVM)的共同发明者弗拉基米尔·瓦普尼克(Vladimir Vapnik)提出的。
MetaTrader应用商店2013年第三季度业绩
MetaTrader应用商店2013年第三季度业绩

MetaTrader应用商店2013年第三季度业绩

又过了一个季度,我们已决定统计MetaTrader 应用商店的业绩 - MetaTrader平台最大的交易机器人和技术指标商店。 直至报告季度末期,有500多名开发者已经将他们的1200个产品放入MetaTrader 应用商店。
preview
探索创建多彩烛条的选项

探索创建多彩烛条的选项

在本文中,我将探讨创建烛条自定义指标的可能性,并指出它们的优缺点。
扩充策略构建器功能
扩充策略构建器功能

扩充策略构建器功能

在前两篇文章之中,我们讨论了 Merrill (美林)形态针对各种数据类型的应用。 并开发了一款应用程序来测试提出的思路。 在本文中,我们将继续策略构建器的工作,来提高其效率,并实现新的功能。