
神经网络实验(第 5 部分):常规化传输到神经网络的输入参数
神经网络是交易者工具包中的终极工具。 我们来检查一下这个假设是否成立。 在交易中运用神经网络,MetaTrader 5 是最接近自给自足的媒介。 为此提供了一个简单的解释。

从头开始开发智能交易系统(第 11 部分):交叉订单系统
在本文中,我们将创建一个交叉订单系统。 有一种类型的资产让交易员的生涯变得非常困难 — 那就是期货合约。 但为什么令他们的职业生涯变得如此困难?

神经网络实验(第 4 部分):模板
在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。 简单的解释。

理解编程范式(第 1 部分):开发价格行为智能系统的过程化方式
了解编程范式及利用 MQL5 代码的应用。本文探讨了过程化编程的细节,并通过一个实际示例提供了实经验。您将学习如何利用 EMA 指标和烛条价格数据开发价格行为智能系统。额外,本文还介绍了函数化编程范式。

测试不同的移动平均类型以了解它们的洞察力
我们都知道移动平均指标对很多交易者的重要性。还有其他移动平均线类型在交易中也很有用,我们将在本文中确定这些类型,并将它们中的每一种与最流行的简单移动平均线进行简单比较,看看哪一种可以显示出最好的结果。

将您自己的LLM集成到EA中(第2部分):环境部署示例
随着人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

掌握ONNX:MQL5交易者的游戏规则改变者
深入ONNX的世界,这是一种用于交换机器学习模型的强大的开放标准格式。了解利用ONNX如何彻底改变MQL5中的算法交易,使交易员能够无缝集成尖端的人工智能模型,并将其策略提升到新的高度。揭开跨平台兼容性的秘密,学习如何在您的MQL5交易活动中释放ONNX的全部潜力。通过这篇掌握ONNX的全面指南提升您的交易游戏

使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序
本项目涉及在金融市场中使用 Python 进行基于深度学习的预测。我们将探索使用平均绝对误差(MAE)、均方误差(MSE)和R平方(R2)等关键指标测试模型性能的复杂性,并学习如何将所有内容打包到可执行文件中。我们还将制作一个 ONNX 模型文件以及它的 EA。

您需要了解的有关MQL5程序结构的所有信息
使用任何编程语言的任何程序都有特定的结构。在本文中,您将通过了解MQL5程序结构每个部分的编程基础知识来学习MQL5计划结构的重要部分,这些基础知识在创建可在MetaTrader 5中执行的MQL5交易系统或交易工具时非常有用。

开发回放系统 — 市场模拟(第 15 部分):模拟器的诞生(V)- 随机游走
在本文中,我们将完成自有系统模拟器的开发。 于此的主要目标是就上一篇文章中讨论的算法进项配置。 该算法旨在创建随机游走走势。 因此,为了明白今天的讲义,有必要了解以前文章的内容。 如果您尚未跟踪模拟器的开发,我建议您从头开始阅读本系列文章。 否则,您也许对此处将要讲解的内容不明所以。

开发多币种 EA 交易(第 2 部分):过渡到交易策略的虚拟仓位
让我们继续开发多币种 EA,让多个策略并行工作。让我们尝试将与市场开仓相关的所有工作从策略级转移到管理策略的 EA 级。这些策略本身只进行虚拟交易,并不建立市场仓位。

您应该知道的 MQL5 向导技术(第 04 部分):线性判别分析
今天的交易者都是哲学家,几乎总是在寻找新的想法,尝试提炼它们,选择修改或丢弃它们:一个探索性的过程,肯定会花费相当的勤奋程度。 这些系列文章将提出 MQL5 向导应该是交易者在此领域努力的中流砥柱。

DoEasy 函数库中的时间序列(第五十六部分):自定义指标对象,从集合中的指标对象获取数据
本文研究在 EA 中创建自定义指标对象。 我们稍微改进一下库类,并添加一些方法,以便从 EA 中的指标对象获取数据。

开发回放系统(第32部分):订单系统(一)
在我们迄今为止开发的所有东西中,正如你可能会注意到并最终同意的那样,这个系统是最复杂的。现在我们需要做一些非常简单的事情:让我们的系统模拟交易服务器的操作。准确实现交易服务器操作方式似乎是一件轻而易举的事情。至少说起来是这样。但我们需要这样做,以便对回放/模拟系统的用户来说,一切都是无缝和透明的。

开发回放系统 — 市场模拟(第 23 部分):外汇(IV)
现在,创建发生在我们将跳价转换为柱线的同一点。以这种方式,如果在转换过程中出现问题,我们就能立即注意到错误。这是因为在快进期间,在图表上放置 1-分钟柱线的代码,也同样在正常表现期间用于定位系统放置柱线。换言之,负责此任务的代码不会在其它任何地方重复。如此这般,我们获得的系统就能更好的维护和改进。

MQL5 简介(第 8 部分):初学者构建 EA 交易系统指南(二)
本文解决了MQL5论坛中常见的初学者问题,并演示了实用的解决方案。学习执行基本任务,如买卖、获取烛形价格以及管理自动交易方面,如交易限额、交易期限和盈亏阈值。获取分步指导,以增强您对 MQL5 中这些概念的理解和实现。

您应该知道的 MQL5 向导技术(第 03 部分):香农(Shannon)熵
今天的交易者都是哲学家,几乎总是在寻找新的想法,尝试提炼它们,选择修改或丢弃它们:一个探索性的过程,肯定会花费相当的勤奋程度。 本系列文章将提出,MQL5 向导应该是交易者的支柱。

情绪分析与深度学习在交易策略中的应用以及使用Python进行回测
在本文中,我们将介绍如何使用Python中的情绪分析和ONNX模型,并将它们应用于EA中。使用一个脚本运行TensorFlow训练的ONNX模型,以进行深度学习预测;而通过另一个脚本获取新闻标题,并使用人工智能技术量化情绪。

您应该知道的 MQL5 向导技术(第 02 部分):Kohonen 映射
这些系列文章所提议的是,MQL5 向导应作为交易员的支柱。 为什么呢? 因为交易员不仅可以利用 MQL5 向导装配他的新想法来节省时间,还可以大大减少重复编码带来的错误;他最终可把精力投向自我交易哲学中的几个关键领域。

了解 MQL5 面向对象编程(OOP)
作为开发人员,我们需要学习如何在创建和开发软件时,无需重复代码做到可重用、且灵活,尤其是当我们拥有不同行为的不同对象时。这可以利用面向对象的编程技术和原则来顺滑地达到。在本文中,我们将介绍 MQL5 面向对象编程的基础知识,以便了解如何在我们的软件中利用这一关键主题的原则和实践。

暴力方式搜素形态(第 V 部分):全新视角
在这篇文章中,我将展示一种完全不同的方式进行算法交易,我经历了很长一段时间后才最终遇到它。当然,这一切所作所为全靠我的暴力程序,其经历了许多更改,令其能够并发解决若干问题。尽管如此,这篇文章明面上仍然比较笼统和尽可能简单,这就是为什么它也适合那些对暴力一无所知的人。

如何利用 MQL5 创建简单的多币种智能交易系统(第 5 部分):凯尔特纳(Keltner)通道上的布林带 — 指标信号
本文中的多币种 EA 是一款智能交易系统或交易机器人,可以仅从一个品种图表中交易(开单、平单和管理订单,例如:尾随止损和止盈)多个品种(对)。在本文中,我们将用到来自两个指标的信号,在本例中为凯尔特纳(Keltner)通道上的布林带®。

神经网络变得轻松(第五十四部分):利用随机编码器(RE3)进行高效研究
无论何时我们研究强化学习方法时,我们都会面对有效探索环境的问题。解决这个问题通常会导致算法更复杂性,以及训练额外模型。在本文中,我们将看看解决此问题的替代方法。

利用 Python 和 MQL5 构建您的第一个玻璃盒模型
如果我们想从机器学习这些先进技术中获得任何价值,那么很难解释和理解为什么我们的模型偏离我们的期望至关重要。如果对模型内部工作原理的没有全面了解,我们可能无法发现破坏模型性能的错误,我们可能会在无法预测的参照特征上浪费时间,从长远来看,我们有可能没有充分利用这些模型的功能。幸运的是,有一个复杂且维护良好的多合一解决方案,令我们能够准确地看到我们的模型在引擎盖下正在做什么。

了解如何在MQL5中处理日期和时间
这是一篇关于一个新的重要话题的新文章,这个话题是关于日期和时间的。作为交易工具的交易员或程序员,了解如何很好、有效地处理日期和时间这两个方面至关重要。因此,我将分享一些重要信息,关于我们如何处理日期和时间,以便顺利、简单地创建有效的交易工具。

MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。

神经网络变得简单(第 66 部分):离线学习中的探索问题
使用准备好的训练数据集中的数据对模型进行离线训练,这种方法虽然有一定的优势,但其不利的一面是,环境信息被大大压缩到训练数据集的大小。这反过来又限制了探索的可能性。在本文中,我们将探讨一种方法,这种方法可以用尽可能多样化的数据来填充训练数据集。