学习如何基于柴金(Chaikin)振荡器设计交易系统
欢迎阅读我们系列的新篇章,学习如何基于最流行的技术指标设计交易系统。 通读这篇新文章,我们将学习如何基于柴金(Chaikin)振荡器指标设计交易系统。
MQL5 简介(第 8 部分):初学者构建 EA 交易系统指南(二)
本文解决了MQL5论坛中常见的初学者问题,并演示了实用的解决方案。学习执行基本任务,如买卖、获取烛形价格以及管理自动交易方面,如交易限额、交易期限和盈亏阈值。获取分步指导,以增强您对 MQL5 中这些概念的理解和实现。
数据科学和机器学习(第 04 部分):预测当前股市崩盘
在本文中,我将尝试运用我们的逻辑模型,基于美国经济的基本面,来预测股市崩盘,我们将重点关注 NETFLIX 和苹果。利用 2019 年和 2020 年之前的股市崩盘,我们看看我们的模型在当前的厄运和低迷中会表现如何。
处理时间(第二部分):函数
自动判定经纪商时移和 GMT。 与其请求您的经纪商的支持,您可能会从他们那里得到一个不充分的答案(他们很愿意解释时间错位),我们只需自行查看在时间变化的几周内他们如何计算价格 — 但手工操作极其繁琐,我们让程序来做这件事 — 毕竟这就是为什么我们要有一台 PC。
神经网络变得轻松(第十九部分):使用 MQL5 的关联规则
我们继续研究关联规则。 在前一篇文章中,我们讨论了这种类型问题的理论层面。 在本文中,我将展示利用 MQL5 实现 FP-Growth 方法。 我们还将采用真实数据测试所实现的解决方案。
数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计
在我们透彻之前,还有一些涵盖前馈神经网络的次要事情,设计就是其中之一。 针对我们的输入,看看我们如何构建和设计一个灵活的神经网络、隐藏层的数量、以及每个网络的节点。
如何成为2008自动交易锦标赛的参赛者?
举办锦标赛的主要目的 - 推广自动交易并且积累自动交易的实用信息。作为锦标赛的主办方-- 我们将致力保持锦标赛的公正性并防止一切企图欺骗的行为。 为此设定了严格的锦标赛规则。
构建和测试肯特纳通道交易系统
在本文中,我们将尝试使用金融市场中一个非常重要的概念 - 波动性 - 来构建交易系统。我们将在了解肯特纳通道(Keltner Channel)指标后提供一个基于该指标的交易系统,并介绍如何对其进行编码,以及如何根据简单的交易策略创建一个交易系统,然后在不同的资产上进行测试。
从头开始开发智能交易系统(第 21 部分):新订单系统 (IV)
最后,视觉系统将开始工作,尽管它尚未完工。 在此,我们将完成主要更改。 这只是它们当中很少一部份,但都是必要的。 嗯,整个工作将非常有趣。
解密开盘区间突破(ORB)日内交易策略
开盘区间突破(ORB)策略基于这样一种理念:市场开盘后不久确立的初始交易区间,反映了买卖双方就价格价值达成共识的重要水平。通过识别突破某一特定区间上方或下方的走势,交易者可以把握随之而来的市场契机——当市场方向愈发明朗时,这种契机往往会进一步显现。本文将探讨三种源自康克瑞图姆集团(Concretum Group)改良的ORB策略。
数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析
运用主成分分析(PCA)彻底革新您的金融市场分析! 发现这种强大的技术如何解锁数据中隐藏的形态,揭示潜在的市场趋势,并优化您的投资策略。 在本文中,我们将探讨 PCA 如何为分析复杂的金融数据提供新的视角,揭示传统方法会错过的见解。 发掘 PCA 应用于金融市场数据如何为您带来竞争优势,并帮助您保持领先地位。
从头开始开发智能交易系统(第 13 部分):时序与交易(II)
今天,我们将针对市场分析构建《时序与交易》系统的第二部分。 在前一篇文章《时序与交易(I)》当中,我们讨论了一种替代的图表组织系统,该系统能够针对市场上执行的成交进行最快速的解释。
数据科学与机器学习(第 02 部分):逻辑回归
数据分类对于算法交易者和程序员来说是至关重要的。 在本文中,我们将重点关注一种分类逻辑算法,它有帮于我们识别“确定或否定”、“上行或下行”、“做多或做空”。
神经网络变得轻松(第四十三部分):无需奖励函数精通技能
强化学习的问题在于需要定义奖励函数。 它可能很复杂,或难以形式化。 为了定解这个问题,我们正在探索一些基于行动和基于环境的方式,无需明确的奖励函数即可学习技能。
从头开始开发智能交易系统(第 19 部分):新订单系统 (II)
在本文中,我们将开发一个“看看发生了什么”类型的图形订单系统。 请注意,我们这次不是从头开始,只不过我们将修改现有系统,在我们交易的资产图表上添加更多对象和事件。
从头开始开发智能交易系统(第 24 部分):提供系统健壮性(I)
在本文中,我们将令系统更加可靠,来确保健壮和安全的使用。 实现所需健壮性的途径之一是尝试尽可能多地重用代码,从而能在不同情况下不断对其进行测试。 但这只是其中一种方式。 另一个是采用 OOP。
DoEasy 函数库中的时间序列(第五十四部分):抽象基准指标类的衍生
本文研究基于基准抽象指标衍生对象类的创建。 这些对象所提供功能,可访问创建的指标 EA,收集和获取各种指标和价格数据的数值统计信息。 同样,创建指标对象集合,从中可以访问程序中创建的每个指标的属性和数据。
神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类
我们继续研究聚类方法。 在本文中,我们将创建一个新的 CKmeans 类来实现最常见的聚类方法之一:k-均值。 在测试期间,该模型成功地识别了大约 500 种形态。
将您自己的LLM集成到EA中(第2部分):环境部署示例
随着人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
将您自己的LLM集成到EA中(第1部分):硬件和环境部署
随着人工智能的快速发展,大型语言模型(LLM)成为人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
数据科学与机器学习(第 03 部分):矩阵回归
这一次,我们的模型是由矩阵构建的,它更具灵活性,同时它允许我们构建更强大的模型,不仅可以处理五个独立变量,但凡我们保持在计算机的计算极限之内,它还可以处理更多变量,这篇文章肯定会是一篇阅读起来很有趣的文章。
“MQL5 应用商店” 2013 年一季度业绩
自创立以来,销售自动交易与技术指标的“MQL5 应用商店”已经吸引来了 250 多位开发者,他们发布了 580 款产品。对于那些已通过销售自己的产品获得丰厚利润的“MQL5 应用商店”卖家来讲,2013 年第一季度是相当成功的。
MVC 设计范式及其应用(第 2 部分):三个组件之间相互作用示意图
本文是前一篇文章中所讨论主题的延续和完善:MQL 程序中的 MVC 范式。 在本文中,我们将研究范式的三个组件之间可能的相互作用的示意图。
在MQL5中创建动态多品种、多周期相对强弱指数(RSI)指标仪表盘
本文中,我们将在MQL5中开发一个动态多品种、多周期相对强弱指数(RSI)指标仪表盘,为交易者提供跨不同品种和时间段的实时RSI值。该仪表盘具备交互式按钮、实时更新功能和有色编码的指标,以帮助交易者做出明智的决策。
神经网络变得轻松(第十八部分):关联规则
作为本系列文章的延续,我们来研究无监督学习方法中的另一类问题:挖掘关联规则。 这种问题类型首先用于零售业,即超市等,来分析市场篮子。 在本文中,我们将讨论这些算法在交易中的适用性。
构建K线趋势约束模型(第十部分):战略均线金叉与死叉(智能交易系统EA)
您是否知道,基于移动平均线交叉的金叉和死叉策略,是识别长期市场趋势最为可靠的指标之一?当短期移动平均线上穿长期移动平均线时,金叉发出看涨趋势信号;而当短期移动平均线下穿长期移动平均线时,死叉则表明看跌趋势。尽管这些策略简单且有效,但手动运用时往往会导致错失机会或延迟交易。
DoEasy 函数库中的时间序列(第五十二部分):多周期、多品种单缓冲区标准指标的跨平台性质
在本文中,研究创建多品种、多周期标准指标的“建仓/派发”。 略微改进指标依托的函数库类,以便从老旧的 MetaTrader 4 平台切换到 MetaTrader 5 时,基于该函数库开发的程序均可正常运行。