
数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析
运用主成分分析(PCA)彻底革新您的金融市场分析! 发现这种强大的技术如何解锁数据中隐藏的形态,揭示潜在的市场趋势,并优化您的投资策略。 在本文中,我们将探讨 PCA 如何为分析复杂的金融数据提供新的视角,揭示传统方法会错过的见解。 发掘 PCA 应用于金融市场数据如何为您带来竞争优势,并帮助您保持领先地位。

从头开始开发智能交易系统(第 13 部分):时序与交易(II)
今天,我们将针对市场分析构建《时序与交易》系统的第二部分。 在前一篇文章《时序与交易(I)》当中,我们讨论了一种替代的图表组织系统,该系统能够针对市场上执行的成交进行最快速的解释。

从头开始开发智能交易系统(第 24 部分):提供系统健壮性(I)
在本文中,我们将令系统更加可靠,来确保健壮和安全的使用。 实现所需健壮性的途径之一是尝试尽可能多地重用代码,从而能在不同情况下不断对其进行测试。 但这只是其中一种方式。 另一个是采用 OOP。

DoEasy 函数库中的时间序列(第五十四部分):抽象基准指标类的衍生
本文研究基于基准抽象指标衍生对象类的创建。 这些对象所提供功能,可访问创建的指标 EA,收集和获取各种指标和价格数据的数值统计信息。 同样,创建指标对象集合,从中可以访问程序中创建的每个指标的属性和数据。

利用 MQL5 的交互式 GUI 改进您的交易图表(第 III 部分):简易可移动交易 GUI
加入我们的《利用 MQL5 的交互式 GUI 改进您的交易图表》系列的第 III 部分,我们将探索将交互式 GUI 集成到 MQL5 中的可移动交易仪表板之中。本文建立在第 I 部分和第 II 部分的基础上,指导读者将静态交易仪表板转换为动态、可移动的。


“MQL5 应用商店” 2013 年一季度业绩
自创立以来,销售自动交易与技术指标的“MQL5 应用商店”已经吸引来了 250 多位开发者,他们发布了 580 款产品。对于那些已通过销售自己的产品获得丰厚利润的“MQL5 应用商店”卖家来讲,2013 年第一季度是相当成功的。

数据科学与机器学习(第 02 部分):逻辑回归
数据分类对于算法交易者和程序员来说是至关重要的。 在本文中,我们将重点关注一种分类逻辑算法,它有帮于我们识别“确定或否定”、“上行或下行”、“做多或做空”。


MVC 设计范式及其应用(第 2 部分):三个组件之间相互作用示意图
本文是前一篇文章中所讨论主题的延续和完善:MQL 程序中的 MVC 范式。 在本文中,我们将研究范式的三个组件之间可能的相互作用的示意图。

MQL5集成:Python
Python是一种广为人知且流行的语言,具有许多功能,尤其是在金融、数据科学、人工智能和机器学习领域。Python也是一种强大的工具,可以在交易中发挥作用。MQL5允许我们将这种强大的语言作为集成工具,以高效地实现我们的目标。在本文中,我们将在了解一些Python的基本信息后,分享如何在MQL5中使用Python作为集成工具。

DoEasy 函数库中的时间序列(第五十二部分):多周期、多品种单缓冲区标准指标的跨平台性质
在本文中,研究创建多品种、多周期标准指标的“建仓/派发”。 略微改进指标依托的函数库类,以便从老旧的 MetaTrader 4 平台切换到 MetaTrader 5 时,基于该函数库开发的程序均可正常运行。

神经网络变得轻松(第十八部分):关联规则
作为本系列文章的延续,我们来研究无监督学习方法中的另一类问题:挖掘关联规则。 这种问题类型首先用于零售业,即超市等,来分析市场篮子。 在本文中,我们将讨论这些算法在交易中的适用性。

神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类
我们继续研究聚类方法。 在本文中,我们将创建一个新的 CKmeans 类来实现最常见的聚类方法之一:k-均值。 在测试期间,该模型成功地识别了大约 500 种形态。

神经网络变得轻松(第二十四部分):改进迁移学习工具
在上一篇文章中,我们创建了一款用于创建和编辑神经网络架构的工具。 今天我们将继续打造这款工具。 我们将努力令其对用户更加友好。 也许可以看到,我们的主题往上更进一步。 但是,您不认为规划良好的工作空间在实现结果方面起着重要作用吗?

Heiken-Ashi指标与移动平均指标组合能够提供好的信号吗?
策略的组合可能会提供更好的机会,我们可以把指标和形态一起使用,或者更进一步,多个指标和形态一起,这样我们可以获得额外的确认因子。移动平均帮我们确认和驾驭趋势,它们是最为人所知的技术指标,这是因为它们的简单性和为分析增加价值的良好记录。

数据科学与机器学习(第 03 部分):矩阵回归
这一次,我们的模型是由矩阵构建的,它更具灵活性,同时它允许我们构建更强大的模型,不仅可以处理五个独立变量,但凡我们保持在计算机的计算极限之内,它还可以处理更多变量,这篇文章肯定会是一篇阅读起来很有趣的文章。

改编版 MQL5 网格对冲 EA(第 1 部分):制作一个简单的对冲 EA
我们将创建一个简单的对冲 EA,作为我们更高级的 Grid-Hedge EA 的基础,它将是经典网格和经典对冲策略的混合体。在本文结束时,您将知晓如何创建一个简单的对冲策略,并且您还将知晓人们对于该策略是否能真正 100% 盈利的说法。

多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)
多层感知器是简单感知器的演变,可以解决非线性可分离问题。 结合反向传播算法,可以有效地训练该神经网络。 在多层感知器和反向传播系列的第 3 部分当中,我们将见识到如何将此技术集成到策略测试器之中。 这种集成将允许使用复杂的数据分析,旨在制定更好的决策,从而优化您的交易策略。 在本文中,我们将讨论这种技术的优点和问题。

神经网络变得轻松(第二十九部分):优势扮演者-评价者算法
在本系列的前几篇文章中,我们见识到两种增强的学习算法。 它们中的每一个都有自己的优点和缺点。 正如在这种情况下经常发生的那样,接下来的思路是将这两种方法合并到一个算法,使用两者间的最佳者。 这将弥补它们每种的短处。 本文将讨论其中一种方法。

神经网络变得轻松(第四十六部分):条件导向目标强化学习(GCRL)
在本文中,我们要看看另一种强化学习方式。 它被称为条件导向目标强化学习(GCRL)。 按这种方式,代理者经过训练,可以在特定场景中达成不同的目标。


在测试程序中对重新报价建模和 Expert Advisor 稳定性分析
重新报价是很多 Expert Advisor 的噩梦,尤其对于进入/退出交易条件非常敏感的 Expert Advisor。本文提供了一种检查 EA 对于重新报价稳定性的方法。

将您自己的LLM集成到EA中(第1部分):硬件和环境部署
随着人工智能的快速发展,大型语言模型(LLM)成为人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

数据科学和机器学习(第 14 部分):运用 Kohonen 映射在市场中寻找出路
您是否正在寻找一种可以帮助您驾驭复杂且不断变化的市场的尖端交易方法? Kohonen 映射是一种创新的人工神经网络形式,可以帮助您发现市场数据中隐藏的形态和趋势。 在本文中,我们将探讨 Kohonen 映射的工作原理,以及如何运用它们来开发更智能、更有效的交易策略。 无论您是经验丰富的交易者,还是刚刚起步,您都不想错过这种令人兴奋的新交易方式。

从头开始开发智能交易系统(第 29 部分):谈话平台
在本文中,我们将学习如何让 MetaTrader 5 平台谈话。 我们如何才能让 EA 更有趣呢? 金融市场交易往往过于无聊和单调,但我们能够令这项工作少些无趣。 请注意,对于那些经历过上瘾等问题的人来说,这个项目可能是危险的。 然而,在一般情况下,它只会让事情聊胜于无。

构建和测试肯特纳通道交易系统
在本文中,我们将尝试使用金融市场中一个非常重要的概念 - 波动性 - 来构建交易系统。我们将在了解肯特纳通道(Keltner Channel)指标后提供一个基于该指标的交易系统,并介绍如何对其进行编码,以及如何根据简单的交易策略创建一个交易系统,然后在不同的资产上进行测试。

使用Python和MQL5开发机器人(第一部分):数据预处理
基于机器学习的交易机器人开发:详细指南本系列文章的第一篇将重点讨论数据的收集与准备以及特征的选择。该项目采用Python编程语言及其相关库,并结合MetaTrader 5平台来实现。

学习如何基于加速(Accelerator)振荡器设计交易系统
我们系列中的一篇新文章,介绍如何通过最流行的技术指标创建简单的交易系统。 我们将学习一个新的加速(Accelerator)振荡器指标,我们将学习如何利用它来设计交易系统。

MQL5中的范畴论(第22部分):对移动平均的不同看法
在本文中,我们尝试通过只关注一个指标来简化对这些系列中所涵盖概念的说明,这是最常见的,可能也是最容易理解的。它就是移动平均。在这样做的时候,我们会探讨垂直自然变换的意义和可能的应用。

如何利用 MQL5 创建简单的多币种智能交易系统(第 2 部分):指标信号:多时间帧抛物线 SAR 指标
本文中的多币种智能交易系统是智能交易系统或交易机器人,它仅在一个品种图表上就能交易(开单、平单、和管理订单,例如:尾随停损和止盈)超过 1 个交易品种对。这次我们只用 1 个指标,即抛物线 SAR 或 iSAR, 将其应用在 PERIOD_M15 到 PERIOD_D1 的多个时间帧。

数据科学与机器学习(第 07 部分):多项式回归
与线性回归不同,多项式回归是一种很灵活的模型,旨在更好地执行线性回归模型无法处理的任务,我们来找出如何在 MQL5 中制作多项式模型,并据其做出积极东西。