MQL5における統計とデータの分析に関する記事

icon

数学的なモデルと確率の法則は多くのトレーダーにとって興味深いでしょう。数学はテクニカル指標の基本であり、トレーディングの結果を分析しストラテジーを開発するためには統計が必要です。

あいまいなロジック、デジタルフィルタ、マーケットプロファイル、コホーネンマップ、ニューラルガス、その他のトレーディングに使用できる多くのツールについてご覧ください。

新しい記事を追加
最新 | ベスト
preview
リプレイシステムの開発 - 市場シミュレーション(第20回):FOREX (I)

リプレイシステムの開発 - 市場シミュレーション(第20回):FOREX (I)

この記事の最初の目的は、外国為替取引のすべての可能性をカバーすることではなく、少なくとも1つのマーケットリプレイを実行できるようにシステムを適応させることです。シミュレーションはまた別の機会にしますが、ティックがなくバーだけでも、少しの努力で外国為替市場で起こりうる取引をシミュレートすることができます。シミュレーターをどのように適応させるかを検討するまでは、この状態が続くでしょう。システム内部でFXのデータに手を加えずに作業しようとすると、さまざまなエラーが発生します。
preview
MQL5における修正グリッドヘッジEA(第2部):シンプルなグリッドEAを作る

MQL5における修正グリッドヘッジEA(第2部):シンプルなグリッドEAを作る

この記事では、MQL5のエキスパートアドバイザー(EA)を使用した自動化について詳しく説明し、初期のバックテスト結果を分析します。この戦略には高い保有能力が必要であることを強調し、今後の回で距離、takeProfit、ロットサイズなどの主要パラメータを最適化する計画を概説します。本連載は、取引戦略の効率性と異なる市場環境への適応性を高めることを目的としています。
自己適応アルゴリズム(第IV部):その他の機能とテスト
自己適応アルゴリズム(第IV部):その他の機能とテスト

自己適応アルゴリズム(第IV部):その他の機能とテスト

引き続き、必要最小限の機能でアルゴリズムを実装して結果をテストします。収益性は非常に低いですが、連載では、完全に自動化された、根本的に異なる市場で取引される完全に異なる商品で収益性の高い取引モデルを示しています。
preview
ニューラルネットワークが簡単に(第27部):DQN (Deep Q-Learning)

ニューラルネットワークが簡単に(第27部):DQN (Deep Q-Learning)

強化学習の研究を続けます。今回は、「Deep Q-Learning」という手法に触れてみましょう。この手法を用いることで、DeepMindチームはアタリ社のコンピューターゲームのプレイで人間を凌駕するモデルを作成することができました。取引上の問題を解決するための技術の可能性を評価するのに役立つと思います。
有用なテクノロジーカクテルでYour MQL5 顧客を驚嘆させる!
有用なテクノロジーカクテルでYour MQL5 顧客を驚嘆させる!

有用なテクノロジーカクテルでYour MQL5 顧客を驚嘆させる!

MQL5 はプログラマーに関数の完全セットとオブジェクト指向API を提供します。それらのお陰でプログラマーは MetaTrader 環境内で願うことを行うことができるのです。ただ「ウェブテクノロジー」は今日ひじょに特殊なことをしてなにか違ったもので顧客を驚かせる必要があったり、ただ MT5 「標準ライブラリ」の特定箇所をマスターする十分な時間がないなんらかの状況で救助にきてくれる極端に多才なツールです。今回の例題によりご自身の開発時間管理の仕方と同時にすばらしいテクノロジーカクテルを作成する方法を実用例をご紹介します。
取引のための組合せ論と確率論(第II部): ユニバーサルフラクタル
取引のための組合せ論と確率論(第II部): ユニバーサルフラクタル

取引のための組合せ論と確率論(第II部): ユニバーサルフラクタル

本稿では、フラクタルの研究を続け、すべての資料の要約に特に注意を払います。これを行うために、これまでの開発をすべて、取引での実用化に便利で理解しやすいコンパクトな形にまとめてみます。
preview
時系列の周波数領域表現:パワースペクトル

時系列の周波数領域表現:パワースペクトル

この記事では、周波数領域での時系列分析に関連する方法について説明します。予測モデルを構築する際に、時系列のパワースペクトルを調べることの有用性を強調します。この記事では、離散フーリエ変換(dft)を用いて時系列を周波数領域で分析することで得られる有用な視点のいくつかを説明します。
DoEasyライブラリの時系列(第45部): 複数期間指標バッファ
DoEasyライブラリの時系列(第45部): 複数期間指標バッファ

DoEasyライブラリの時系列(第45部): 複数期間指標バッファ

本稿では、複数期間モードと複数銘柄モードで使用する指標バッファオブジェクトおよびコレクションクラスの改善を始めます。現在の銘柄チャートの任意の時間枠からデータを受信して表示するためのバッファオブジェクトの使用を検討するつもりです。
DoEasyライブラリの時系列(第47部): 複数銘柄・複数期間標準指標
DoEasyライブラリの時系列(第47部): 複数銘柄・複数期間標準指標

DoEasyライブラリの時系列(第47部): 複数銘柄・複数期間標準指標

この記事では、標準指標を操作する方法の開発を開始します。これにより、最終的には、ライブラリクラスに基づいて複数銘柄の複数期間の標準指標を作成できるようになります。さらに、「スキップされたバー」イベントを時系列クラスに追加し、ライブラリ準備関数をCEngineクラスに移動することで、メインプログラムコードからの過度の負荷を排除します。
MQL5 Market 一周年
MQL5 Market 一周年

MQL5 Market 一周年

MQL5 Marketがサービスを開始して、1年が経過しました。新しいサービスをMetaTrader5プラットフォームにおけるテクニカルインジケーターやトレーディングシステムの巨大ストアに変える困難な一年でした。
preview
機械学習や取引におけるメタモデル:取引注文のオリジナルタイミング

機械学習や取引におけるメタモデル:取引注文のオリジナルタイミング

機械学習におけるメタモデル:人間がほとんど介在しない取引システムの自動作成 - いつ、どのように取引をおこなうかはモデルが自ら決定します。
preview
データサイエンスと機械学習(第24回):通常のAIモデルによるFX時系列予測

データサイエンスと機械学習(第24回):通常のAIモデルによるFX時系列予測

外国為替市場において、過去を知らずに将来のトレンドを予測することは非常に困難です。過去の値を考慮して将来の予測をおこなうことができる機械学習モデルは非常に少ないです。この記事では、市場に勝つために古典的な(非時系列)人工知能モデルを使用する方法について説明します。
DoEasyライブラリでのその他のクラス(第69部): チャットオブジェクトコレクションクラス
DoEasyライブラリでのその他のクラス(第69部): チャットオブジェクトコレクションクラス

DoEasyライブラリでのその他のクラス(第69部): チャットオブジェクトコレクションクラス

本稿からチャートオブジェクトコレクションクラスの開発を開始します。このクラスでは、サブウィンドウと指標とともにチャートオブジェクトのコレクションリストを保存し、選択したチャートとそのサブウィンドウ、または複数のチャートのリストを一度に操作する機能を提供します。
preview
ニューラルネットワークが簡単に(第22部):回帰モデルの教師なし学習

ニューラルネットワークが簡単に(第22部):回帰モデルの教師なし学習

モデルと教師なし学習アルゴリズムの研究を続けます。今回は、回帰モデルの学習に適用した場合のオートエンコーダの特徴について提案します。
preview
母集団最適化アルゴリズム:重力探索アルゴリズム(GSA)

母集団最適化アルゴリズム:重力探索アルゴリズム(GSA)

GSAは、無生物から着想を得た母集団最適化アルゴリズムです。アルゴリズムに実装されたニュートンの重力の法則のおかげで、その物体の相互作用をモデル化する高い信頼性によって、惑星系や銀河団の魅惑的なダンスを観察することができます。今回は、最も興味深く、独創的な最適化アルゴリズムの1つを考えてみます。また、宇宙物体の移動シミュレータも提示されています。
preview
ニューラルネットワークが簡単に(第18部):アソシエーションルール

ニューラルネットワークが簡単に(第18部):アソシエーションルール

この連載の続きとして、教師なし学習の手法の中で、もう1つのタイプの問題であるアソシエーションルールのマイニングについて考えてみましょう。この問題タイプは、小売業、特にスーパーマーケットで、市場の分類を分析するために最初に使用されました。今回は、このようなアルゴリズムの取引への応用についてお話します。
2013 年第三四半期 MetaTrader AppStore 実績
2013 年第三四半期 MetaTrader AppStore 実績

2013 年第三四半期 MetaTrader AppStore 実績

また四半期が経過したところで、 MetaTrader AppStore の実績を集計することにしました。MetaTrader AppStore は MetaTrader の売買ロボットおよびテクニカルインディケータの最大ストアです。報告対象四半期の終わりまでに「マーケット」には 500 人以上の開発者が 1,200 以上のプロダクツを出しました。
preview
離散ハートレー変換

離散ハートレー変換

この記事では、スペクトル分析と信号処理の方法の1つである離散ハートレー変換について説明します。信号のフィルタリング、スペクトルの分析などが可能になります。DHTの能力は離散フーリエ変換の能力に劣りません。ただし、DFTとは異なり、DHTは実数のみを使用するため、実際の実装がより便利であり、その適用結果はより視覚的です。
preview
データサイエンスと機械学習(第11回):単純ベイズ、取引における確率論

データサイエンスと機械学習(第11回):単純ベイズ、取引における確率論

確率を利用した取引は綱渡りのようなもので、正確さとバランス、そしてリスクに対する鋭い理解が必要です。取引の世界では、確率がすべてです。確率は、成功と失敗、利益と損失の違いになります。確率の力を活用することで、トレーダーは十分な情報に基づいた意思決定をおこない、リスクを効果的に管理し、経済的目標を達成することができます。つまり、経験豊富な投資家であれ、初心者のトレーダーであれ、確率を理解することは、取引の可能性を引き出す鍵になるのです。この記事では、確率を利用したエキサイティングな取引の世界を探求し、取引ゲームを次のレベルに引き上げる方法を紹介します。
Expert Advisor動作中のバランス曲線勾配調整
Expert Advisor動作中のバランス曲線勾配調整

Expert Advisor動作中のバランス曲線勾配調整

トレードシステムのルールを見つけ、それをExpert Advisorにプログラムするのが仕事の半分です。Expert Advisorはトレーディング結果を集積するので、いくらかの処理を修正する必要があります。本項では、バランス曲線の勾配測定のフィードバックを作成することで、Expert Advisorのパフォーマンスを向上させる方法の一つについて述べます。
preview
データサイエンスと機械学習(第03回):行列回帰

データサイエンスと機械学習(第03回):行列回帰

今回のモデルは行列によって作成されています。これにより柔軟性が得られ、コンピュータの計算限界内に留まる限り、5つの独立変数だけでなく多くの変数を処理できる強力なモデルを作成できます。この記事を面白く読めることは間違いありません。
preview
ニューラルネットワークが簡単に(第21部):変分オートエンコーダ(Variational autoencoder、VAE)

ニューラルネットワークが簡単に(第21部):変分オートエンコーダ(Variational autoencoder、VAE)

前回の記事で、オートエンコーダアルゴリズムについて学びました。他のアルゴリズム同様、このアルゴリズムには長所と短所があります。元の実装では、オートエンコーダは、訓練標本からオブジェクトを可能な限り分離するために使用されます。今回はその短所への対処法についてお話します。
preview
リプレイシステムの開発 — 市場シミュレーション(第4回):設定の調整(II)

リプレイシステムの開発 — 市場シミュレーション(第4回):設定の調整(II)

システムとコントロールを作り続けましょう。サービスをコントロールする能力がなければ、システムを前進させ、改善することは難しくなります。
preview
ニューラルネットワークが簡単に(第26部):強化学習

ニューラルネットワークが簡単に(第26部):強化学習

機械学習の手法の研究を続けます。今回からは、もう1つの大きなテーマである「強化学習」を始めます。この方法では、モデルは問題を解決するためのある種の戦略を設定することができます。この強化学習の特性は、取引戦略を構築する上で新たな地平を切り開くものと期待されます。
preview
インディケーター情報の測定

インディケーター情報の測定

機械学習は、ストラテジー開発の手法として注目されています。これまで、収益性と予測精度の最大化が重視される一方で、予測モデル構築のためのデータ処理の重要性はあまり注目されてきませんでした。この記事では、Timothy Masters著の書籍「Testing and Tuning Market Trading Systems」に記載されているように、予測モデル構築に使用するインディケーターの適切性を評価するために、エントロピーの概念を使用することについて考察しています。
DoEasyライブラリの時系列(第48部): 複数銘柄・複数期間指標バッファ
DoEasyライブラリの時系列(第48部): 複数銘柄・複数期間指標バッファ

DoEasyライブラリの時系列(第48部): 複数銘柄・複数期間指標バッファ

本稿では、指標バッファオブジェクトのクラスを改善して、複数銘柄モードで動作するようにします。これにより、カスタムプログラムで複数銘柄・複数期間指標を作成するための道が開かれます。複数銘柄・複数期間指標標準指標を作成するために、不足している機能を計算バッファオブジェクトに追加します。
preview
ニューラルネットワークが簡単に(第14部):データクラスタリング

ニューラルネットワークが簡単に(第14部):データクラスタリング

前回の記事を公開してから1年以上が経過しました。アイデアを修正して新しいアプローチを開発するには、これはかなりの時間です。この新しい記事では、以前に使用された教師あり学習法から逸れようと思います。今回は、教師なし学習アルゴリズムについて説明します。特に、クラスタリングアルゴリズムの1つであるk-meansについて検討していきます。
preview
データサイエンスと機械学習(第28回):AIを使ってEURUSDの複数の先物を予測する

データサイエンスと機械学習(第28回):AIを使ってEURUSDの複数の先物を予測する

多くの人工知能モデルでは単一の将来値を予測することが一般的ですが、この記事では、機械学習モデルを用いて複数の将来値を予測するという強力な手法について掘り下げていきます。このアプローチは「多段階予測」として知られ、明日の終値だけでなく、明後日以降の値も予測することが可能です。多段階予測をマスターすることで、トレーダーやデータサイエンティストはより深い洞察を得ることができ、情報に基づいた意思決定を行うことで予測能力と戦略立案を大幅に強化することができます。
MQL5.community 人名鑑
MQL5.community 人名鑑

MQL5.community 人名鑑

MQL5.com ウェブサイトはみなさんのことをとてもよく覚えています!何本のスレッドがすばらしい出来か、記事がどれほど人気か、「コードベース」のプログラムがどのくらいの頻度でダウンロードされるか。これは MQL5.comで記憶されていることのほんの小さな一部にしかすぎません。みなさんの実績はプロフィールで確認可能ですが、全体像はどうでしょうか?本稿では全 MQL5.community メンバーの実績概要を示します。
preview
知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標

知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標

ATRオシレーターは、特に外国為替市場において、ボラティリティの代理として機能する非常に人気のあるインジケーターです。これは、特にボリュームデータが不足している市場で広く活用されています。以前のインジケーターと同様に、パターンに基づいて分析をおこない、MQL5ウィザードライブラリのクラスとアセンブリを活用して、戦略およびテストレポートを共有します。
DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス
DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス

DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス

本稿では、チャートオブジェクトクラスの開発を続け、利用可能な指標のリストを含むチャートウィンドウオブジェクトのリストに追加します。
preview
プロのプログラマーからのヒント(第III部): ロギングSeqログ収集および分析システムへの接続

プロのプログラマーからのヒント(第III部): ロギングSeqログ収集および分析システムへの接続

エキスパートログに出力されるメッセージを統合および構造化するためのLoggerクラスの実装。Seqログ収集および分析システムへの接続。オンラインでのログメッセージの監視。
2013 年第二四半期 MQL5マーケット 実績
2013 年第二四半期 MQL5マーケット 実績

2013 年第二四半期 MQL5マーケット 実績

1年半成功裏に実績を積み、MQL5 「マーケット」はトレーダーにとってトレーディング戦略およびテクニカルインディケータの最大のストアとなりました。そこでは世界中の開発者 350 名から提供される約 800 件のトレーディングアプリケーションが提供されています。100,000 件以上のトレーディングプログラムがすでにトレーダーにより購入され、MetaTrader 5 ターミナルにダウンロードされています。
DoEasyライブラリでのその他のクラス(第70部): チャットオブジェクトコレクショの機能拡張と自動更新
DoEasyライブラリでのその他のクラス(第70部): チャットオブジェクトコレクショの機能拡張と自動更新

DoEasyライブラリでのその他のクラス(第70部): チャットオブジェクトコレクショの機能拡張と自動更新

本稿では、チャートオブジェクトの機能を拡張し、チャートのナビゲーション、スクリーンショットの作成、チャートの保存と適用を行います。また、チャートオブジェクトのコレクション、それらのウィンドウ、およびその中の指標の自動更新を実装します。
preview
データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける

データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける

複雑で変化し続ける市場をナビゲートする、最先端の取引アプローチをお探しですか。人工ニューラルネットワークの革新的な形態であるコホネンマップは、市場データの隠れたパターンやトレンドを発見するのに役立ちます。この記事では、コホネンマップがどのように機能するのか、そして、より賢く、より効果的な取引戦略を開発するために、どのように活用できるのかを探ります。経験豊富なトレーダーも、これから取引を始める人も、このエキサイティングな新しいアプローチを見逃す手はありません。
preview
データサイエンスと機械学習(第26回):時系列予測における究極の戦い - LSTM対GRUニューラルネットワーク

データサイエンスと機械学習(第26回):時系列予測における究極の戦い - LSTM対GRUニューラルネットワーク

前回の記事では、データの長期的な依存関係をうまく捉えられないにもかかわらず、利益を上げる戦略を構築できる単純RNNについて説明しました。この記事では、LSTM (Long-Short Term Memory)とGRU (Gated Recurrent Unit)の両方について説明します。この2つは、単純RNNの欠点を克服し、それを凌駕するために紹介されました。
preview
Rebuyのアルゴリズム:効率を上げるための数学モデル

Rebuyのアルゴリズム:効率を上げるための数学モデル

この記事では、取引システムの効率をより深く理解するためにRebuyアルゴリズムを使用し、数学と論理を使用して取引効率を向上させる一般的な原則に着手し、どのような取引システムでも制約なく使用するという観点から、最も非標準的な、効率を高める方法を適用します。
preview
ニュース取引が簡単に(第1回):データベースの作成

ニュース取引が簡単に(第1回):データベースの作成

ニュース取引は複雑で圧倒されるかもしれませんが、この記事ではニュースデータを入手する手順を説明し、さらに、MQL5経済指標カレンダーとその特徴についても学びます。
preview
MQL5におけるARIMAモデルによる予測

MQL5におけるARIMAモデルによる予測

この記事では、ARIMAモデルを構築するためのCArimaクラスの開発を継続し、予測を可能にする直感的な手法を追加します。
preview
母集団最適化アルゴリズム:蟻コロニー最適化(ACO)

母集団最適化アルゴリズム:蟻コロニー最適化(ACO)

今回は、蟻コロニー最適化アルゴリズムについて解析します。このアルゴリズムは非常に興味深く、複雑です。この記事では、新しいタイプのACOの作成を試みます。