古典的な戦略を再構築する(第14回):複数戦略分析
本記事では、取引戦略のアンサンブル構築と、MT5遺伝的最適化を用いた戦略パラメータの調整について、引き続き検討していきます。本日はPythonでデータを分析し、モデルがどの戦略が優れているかをより正確に予測でき、市場リターンを直接予測するよりも高い精度を達成できることを示しました。しかし、統計モデルを用いてアプリケーションをテストしたところ、パフォーマンスは著しく低下しました。その後、遺伝的最適化が相関性の高い戦略を優先していたことが判明し、私たちは投票の重みを固定し、インジケーター設定の最適化に焦点を当てるよう方法を修正しました。
市場シミュレーション(第3回):パフォーマンスの問題
時には一歩下がってから前進する必要があります。本記事では、マウスインジケーターおよびChart Tradeインジケーターが正常に動作するようにするために必要なすべての変更についてご紹介します。さらにおまけとして、今後広く使用される他のヘッダーファイルにおける変更についても触れます。
循環単為生殖アルゴリズム(CPA)
本記事では、新しい集団最適化アルゴリズムである循環単為生殖アルゴリズム(CPA: Cyclic Parthenogenesis Algorithm)を取り上げます。本アルゴリズムは、アブラムシ特有の繁殖戦略に着想を得ています。CPAは、単為生殖と有性生殖という2つの繁殖メカニズムを組み合わせるほか、個体群のコロニー構造を活用し、コロニー間の移動も可能にしています。このアルゴリズムの主要な特徴は、異なる繁殖戦略間の適応的な切り替えと、飛行メカニズムを通じたコロニー間の情報交換システムです。
データサイエンスとML(第43回):潜在ガウス混合モデル(LGMM)を用いた指標データにおける隠れパターン検出
チャートを見ていて、奇妙な感覚を覚えたことはありませんか。表面のすぐ下にパターンが隠されている気がして、もし解読できれば価格がどこに向かうか分かるかもしれない、そんな秘密のコードが存在するかもしれないという感覚です。ここで紹介するのがLGMM、マーケットの隠れたパターンを検出するモデルです。これは機械学習モデルで、隠れた市場のパターンを識別する手助けをします。
取引におけるニューラルネットワーク:Attentionメカニズムを備えたエージェントのアンサンブル(最終回)
前回の記事では、複数のエージェントによるアンサンブルを用いて、異なるデータスケールのマルチモーダル時系列をクロス分析するマルチエージェント適応型フレームワーク「MASAAT」を紹介しました。今回は、このフレームワークのアプローチをMQL5で引き続き実装し、この研究を論理的な結論へと導きます。
ブラックホールアルゴリズム(BHA)
ブラックホールアルゴリズム(BHA)は、ブラックホールの重力原理に着想を得た最適化アルゴリズムです。本記事では、BHAがどのようにして優れた解を引き寄せ、局所最適解への陥り込みを回避するのか、そしてなぜこのアルゴリズムが複雑な問題を解くための強力なツールとなっているのかを解説します。シンプルな発想がいかにして最適化の世界で大きな成果を生み出すのかを見ていきましょう。
アルゴリズム取引におけるニューロシンボリックシステム:シンボリックルールとニューラルネットワークを組み合わせる
本記事では、古典的なテクニカル分析とニューラルネットワークを組み合わせたハイブリッド型取引システムの開発経験について解説します。システムのアーキテクチャを、基本的なパターン分析やニューラルネットワーク構造から、実際の売買判断に至るメカニズムまで詳細に分析し、実際のコードや実務的な知見も共有します。
MQL5で他の言語の実用的なモジュールを実装する(第3回):Pythonのscheduleモジュール、強化版OnTimerイベント
Pythonのscheduleモジュールは、繰り返しタスクをスケジュールする簡単な方法を提供します。MQL5には組み込みの同等機能はありませんが、この記事ではMetaTrader 5でのタイムイベントの設定を容易にするために、類似のライブラリを実装します。
MQL5サービスからPythonアプリケーションへのMetaTraderティック情報アクセス(ソケット使用)
場合によっては、MQL5言語だけではすべてをプログラムできないことがあります。また、既存の高度なライブラリをMQL5に移植することは可能であっても、非常に時間がかかります。本記事では、MetaTraderのティック情報(Bid、Ask、時刻など)をMetaTraderサービスを経由してPythonアプリケーションに送信し、Windows OSへの依存を回避する方法を紹介します。
プライスアクション分析ツールキットの開発(第39回):MQL5でBOSとChoCHの検出を自動化する
本記事では、フラクタルピボットを実用的な市場構造シグナルへ変換する、コンパクトなMQL5システム「Fractal Reaction System」を紹介します。リペイントを回避するために確定バーのロジックを用い、EAはChoCH (Change-of-Character)警告を検出し、BOS (Break-of-Structure)を確定させ、永続的なチャートオブジェクトを描画し、すべての確定イベントをログ出力してアラート(デスクトップ、モバイル、サウンド)します。アルゴリズム設計、実装上の注意点、テスト結果、そしてEAコード全文を順に解説し、読者ご自身でコンパイル、テスト、展開できるようにします。
ビッグバンビッグクランチ(BBBC)アルゴリズム
本記事では、ビッグバンビッグクランチ(BBBC)法について紹介します。本手法は2つの主要な段階から構成されます。すなわち、ランダムな点を周期的に生成する段階と、それらを最適解へ圧縮する段階です。本アプローチは探索と精緻化を組み合わせることで、段階的により良好な解を導出し、新たな最適化の可能性を開くことが可能です。
取引所価格のバイナリコードの分析(第1回):テクニカル分析の新たな視点
本記事では、価格変動をバイナリコードに変換するという新しい視点からテクニカル分析にアプローチします。筆者は、シンプルな値動きから複雑な市場パターンに至るまで、あらゆる市場行動を「0」と「1」のシーケンスとして符号化できることを示します。
MQL5における特異スペクトル解析
本記事は、特異スペクトル解析(SSA: Singular Spectrum Analysis)の概念に不慣れな方を対象に、MQL5で利用可能な組み込みツールを実際に活用できるようになるためのガイドとして作成されたものです。
データサイエンスとML(第46回):PythonでN-BEATSを使った株式市場予測
N-BEATSは、時系列予測のために設計された革新的なディープラーニングモデルです。このモデルは、ARIMAやPROPHET、VARなどの従来の時系列予測モデルを超えることを目指して公開されました。本記事では、このモデルについて説明し、株式市場の予測にどのように活用できるかを紹介します。
プライスアクション分析ツールキットの開発(第31回):Python Candlestick Recognitionエンジン(I) - 手動検出
ローソク足パターンはプライスアクション取引において基本的な要素であり、市場の反転や継続の可能性を示す貴重な手がかりを提供します。信頼できるツールを想像してみてください。このツールは、新しい価格バーが生成されるたびにそれを監視し、包み足、ハンマー、十字線、スターなどの主要な形成を特定し、重要な取引セットアップが検出された際に即座に通知します。これがまさに私たちが開発した機能です。このシステムは、取引初心者の方から経験豊富なプロフェッショナルまで幅広く活用できます。ローソク足パターンをリアルタイムで通知することで、取引の実行に集中し、より自信を持って効率的に取引をおこなうことが可能になります。以下では、本ツールの動作方法と、どのように取引戦略を強化できるかについて詳しく説明します。
共和分株式による統計的裁定取引(第2回):エキスパートアドバイザー、バックテスト、最適化
この記事では、ナスダックの4銘柄のバスケットを対象としたサンプルのエキスパートアドバイザー(EA)実装を紹介します。銘柄はまずピアソン相関係数に基づいてフィルタリングされました。その後、フィルタリングされた銘柄群について、ジョハンセン検定を用いて共和分関係の有無を検証しました。最後に、共和分関係から得られたスプレッドについて、ADF検定およびKPSS検定を用いて定常性を検証しました。ここでは、このプロセスに関する補足と、小規模な最適化後のバックテスト結果について説明します。
MQL5での取引戦略の自動化(第27回):視覚的なフィードバックによるプライスアクションクラブハーモニックパターンの作成
本記事では、MQL5で弱気、強気両方のクラブ(Crab)ハーモニックパターンを、ピボットポイントとフィボナッチ比率を用いて識別し、正確なエントリー、ストップロス、テイクプロフィットレベルを使用して取引を自動化するクラブパターンシステムを開発します。また、XABCDパターン構造やエントリーレベルを表示するために、三角形やトレンドラインなどのチャートオブジェクトを使った視覚的な表示機能を追加します。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(V) - イベントリマインダーシステム
本ディスカッションでは、News Headline EAに表示される経済指標カレンダーイベントに対して、精緻化されたイベント通知ロジックを統合することで得られる追加的な改善について検討します。この強化により、主要な今後のイベント直前にユーザーがタイムリーに通知を受け取れるようになります。詳細については、本ディスカッションでご確認ください。
プライスアクション分析ツールキットの開発(第38回):ティックバッファVWAPと短期不均衡エンジン
第38回では、生のティックを実用的なシグナルに変換する、実稼働グレードのMT5監視パネルを構築します。EAはティックデータをバッファリングし、ティックレベルのVWAP、短期ウィンドウの不均衡(フロー)指標、ATRに基づくポジションサイズを計算します。その後、スプレッド、ATR、フローを低フリッカーのバーで可視化します。システムは推奨ロットサイズと1Rストップを計算し、狭いスプレッド、強いフロー、エッジ条件に対して設定可能なアラートを発行します。自動取引は意図的に無効化しており、堅牢なシグナル生成とクリーンなユーザー体験に重点を置いています。
MetaTrader 5機械学習の設計図(第2回):機械学習のための金融データのラベリング
本連載「機械学習の設計図」の第2回では、単純なラベル付けがなぜモデルを誤った方向に導いてしまうのか、そしてトリプルバリア法やトレンドスキャン法といった高度な手法をどのように適用すれば、リスクを考慮した堅牢なターゲットを定義できるのかをご紹介します。計算負荷の高いこれらの手法を最適化する実践的なPythonコード例も多数取り上げ、市場のノイズに満ちたデータを、現実の取引環境に即した信頼性の高いラベルへと変換する方法を詳しく解説します。
学習中にニューロンを活性化する関数:高速収束の鍵は?
本記事では、ニューラルネットワークの学習における異なる活性化関数と最適化アルゴリズムの相互作用に関する研究を紹介します。特に、古典的なADAMとその集団版であるADAMmを比較し、振動するACONやSnake関数を含む幅広い活性化関数での動作を検証します。最小構成のMLPアーキテクチャ(1-1-1)と単一の学習例を用いることで、活性化関数が最適化に与える影響を他の要因から切り離して観察します。本記事では、活性化関数の境界を利用したネットワーク重みの管理と重み反射機構を提案し、学習における飽和や停滞の問題を回避できることを示します。
リプレイシステムの開発(第78回):新しいChart Trade(V)
本記事では、受信側コードの一部の実装方法について解説します。ここでは、プロトコルの相互作用をテストし理解するためのエキスパートアドバイザー(EA)を実装します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
MQL5で自己最適化エキスパートアドバイザーを構築する(第12回):行列分解を用いた線形分類器の構築
本記事では、アルゴリズム取引における行列分解の強力な役割、特にMQL5アプリケーション内での活用について探ります。回帰モデルからマルチターゲット分類器まで、実際の例を通して、これらの手法が組み込みのMQL5関数を使ってどれほど容易に統合できるかを示します。価格の方向性を予測する場合でも、インジケーターの挙動をモデル化する場合でも、このガイドは行列手法を用いたインテリジェントな取引システム構築の強固な基盤を提供します。
取引システムの構築(第2回):ポジションサイズ管理の科学
期待値がプラスのシステムであっても、ポジションサイズ管理の決定次第で取引が成功するか破綻するかが決まります。ポジションサイズ管理はリスク管理の中心であり、統計的な優位性を現実の利益に変換しつつ、資本を守る役割を担います。
MQL5取引ツール(第8回):ドラッグ&最小化可能な拡張情報ダッシュボード
本記事では、前回のダッシュボードを拡張し、ドラッグ&最小化機能を追加し、ユーザー操作性を向上させながら、複数銘柄のポジションや口座指標のリアルタイム監視を維持する情報ダッシュボードを開発します。
MQL5における単変量時系列への動的モード分解の適用
動的モード分解(DMD: Dynamic Mode Decomposition)は、主に高次元データセットに対して用いられる手法です。本稿では、DMDを単変量の時系列に適用し、その特性把握や予測に活用できることを示します。その過程で、MQL5に搭載されているDMDの実装、とりわけ新しい行列メソッドであるDynamicModeDecomposition()について詳しく解説します。
MetaTraderとGoogleシートがPythonAnywhereで融合:安全なデータフローのガイド
本記事では、MetaTraderのデータをGoogleスプレッドシートに安全にエクスポートする方法を紹介します。Googleスプレッドシートはクラウドベースで、保存されたデータにいつでもどこからでもアクセスできるため、非常に有用なソリューションです。トレーダーはGoogleスプレッドシートにエクスポートされた取引データや関連情報にいつでもアクセスでき、将来の取引に向けた分析を自由におこなうことができます。
FVGをマスターする:ブレーカーと市場構造の変化によるフォーメーション、ロジック、自動取引
これは、FVG(Fair Value Gaps、フェアバリューギャップ)の発生の形成ロジックや、ブレーカーおよびMSS(Market Structure Shifts、市場構造の変化)を用いた自動取引について解説することを目的として執筆した記事です。
プライスアクション分析ツールキットの開発(第40回):Market DNA Passport
本記事では、各通貨ペアが持つ固有のアイデンティティを、その過去のプライスアクションという視点から探ります。生物の設計図を記述するDNAの概念に着想を得て、本記事では市場にも同様の枠組みを適用し、プライスアクションを各通貨ペアのDNAとして扱います。ボラティリティ、スイング、リトレースメント、スパイク、セッション特性といった構造的挙動を分解することで、各ペアを他と区別する基礎的なプロファイルが浮かび上がります。このアプローチにより、市場行動に対するより深い洞察が得られ、トレーダーは各銘柄の特性に合った戦略を体系的に組み立てられるようになります。
共和分株式による統計的裁定取引(第3回):データベースのセットアップ
本記事では、新しく作成したデータベースを更新するためのMQL5 Serviceのサンプル実装を紹介します。このデータベースはデータ分析や、共和分関係にある株式バスケットの取引に利用されます。データベース設計の根拠についても詳しく説明し、参照用としてデータディクショナリを文書化します。さらに、データベースの作成、スキーマ初期化、市場データ挿入のためのMQL5とPythonのスクリプトも提供します。
共和分株式による統計的裁定取引(第4回):リアルタイムモデル更新
本記事では、共和分関係にある株式バスケットを対象とした、シンプルでありながら包括的な統計的アービトラージのパイプラインについて解説します。データのダウンロードと保存を行うPythonスクリプト、相関検定、共和分検定、定常性検定、さらにデータベース更新用のMetatrader 5サービスの実装およびそれに対応するエキスパートアドバイザー(EA)も含まれています。また、いくつかの設計上の判断については、参考情報および実験の再現性向上のために本記事に記録しています。
プライスアクション分析ツールキットの開発(第41回):MQL5で統計的価格レベルEAを構築する
統計は常に金融分析の中心にあります。統計とは、データを収集・分析・解釈・提示し、意味のある情報に変換する学問です。これをローソク足に応用すると、価格の生データを測定可能な洞察に圧縮できます。特定期間における市場の中心傾向、分布、広がりを把握できれば、どれほど有益でしょうか。本記事では、統計的手法を用いてローソク足データを明確で実行可能なシグナルに変換する方法を紹介します。
MQL5におけるパイプライン
本記事では、機械学習におけるデータ準備工程の中で、重要性が急速に高まっているデータ前処理パイプラインを取り上げます。前処理パイプラインとは、生データをモデルに入力する前に通す一連の変換ステップを整理し、効率化したものです。一見地味な作業ですが、前処理(特にスケーリング)は学習時間や実行コストを削減するだけでなく、モデルの汎化性能を大きく左右します。本記事ではscikit-learnの前処理関数を中心に扱います。MQL5ウィザードはここでは使用しませんが、後続の記事で取り上げる予定です。
サイクルベースの取引システム(DPO)の構築と最適化の方法
本記事では、MQL5におけるDPO(Detrended Price Oscillator、トレンド除去価格オシレーター)を用いた取引システムの設計および最適化手法について解説します。DPOのコアロジックを明確にし、長期トレンドを排除して短期サイクルを抽出する仕組みを示します。さらに、段階的な例とシンプルな戦略を通じて、インジケーターの実装方法、エントリー/エグジット条件の定義、そしてバックテストの実施方法について学ぶことができます。最後に、パフォーマンスを向上させ、市場環境の変化へ適応させるための実践的な最適化手法を紹介します。