MQL5における統計とデータの分析に関する記事

icon

数学的なモデルと確率の法則は多くのトレーダーにとって興味深いでしょう。数学はテクニカル指標の基本であり、トレーディングの結果を分析しストラテジーを開発するためには統計が必要です。

あいまいなロジック、デジタルフィルタ、マーケットプロファイル、コホーネンマップ、ニューラルガス、その他のトレーディングに使用できる多くのツールについてご覧ください。

新しい記事を追加
最新 | ベスト
preview
母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト

母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト

この記事では、確率分布の形状を変えることが最適化アルゴリズムの性能に与える影響について検証します。最適化問題の文脈における様々な確率分布の効率を評価するために、スマート頭足類(SC、Smart Cephalopod)テストアルゴリズムを用いた実験をおこないます。
preview
知っておくべきMQL5ウィザードのテクニック(第11回):ナンバーウォール

知っておくべきMQL5ウィザードのテクニック(第11回):ナンバーウォール

ナンバーウォールは、リニアシフトバックレジスタの一種で、収束を確認することにより、予測可能な数列を事前にスクリーニングします。これらのアイデアがMQL5でどのように役立つかを見ていきます。
preview
CatBoost機械学習モデルをトレンド追従戦略のフィルターとして活用する

CatBoost機械学習モデルをトレンド追従戦略のフィルターとして活用する

CatBoostは、定常的な特徴量に基づいて意思決定をおこなうことに特化した、強力なツリーベースの機械学習モデルです。XGBoostやRandom Forestといった他のツリーベースモデルも、堅牢性、複雑なパターンへの対応力、そして高い解釈性といった点で共通した特長を備えています。これらのモデルは、特徴量分析からリスク管理に至るまで、幅広い分野で活用されています。本記事では、学習済みのCatBoostモデルを、従来型の移動平均クロスを用いたトレンドフォロー戦略のフィルターとして活用する手順を解説します。
preview
リプレイシステムの開発 - 市場シミュレーション(第8回):指標のロック

リプレイシステムの開発 - 市場シミュレーション(第8回):指標のロック

この記事では、MQL5言語を使用しながら指標をロックする方法を見ていきます。非常に興味深く素晴らしい方法でそれをおこないます。
preview
時系列分類問題における因果推論

時系列分類問題における因果推論

この記事では、機械学習を用いた因果推論の理論と、Pythonによるカスタムアプローチの実装について見ていきます。因果推論と因果思考は哲学と心理学にルーツを持ち、現実を理解する上で重要な役割を果たしています。
preview
チャート上で取引を視覚化する(第1回):分析期間の選択

チャート上で取引を視覚化する(第1回):分析期間の選択

ここでは、取引エントリを分析するために取引の印刷画面のアンロードを簡素化するスクリプトをゼロから開発します。単一の取引に関するすべての必要な情報は、異なる時間枠を描画する機能を備えた1つのチャートに便利に表示されます。
preview
MQL5における代替リスクリターン指標

MQL5における代替リスクリターン指標

本稿では、シャープレシオの代替指標とされるいくつかのリスクリターン指標の実装を紹介し、その特徴を分析するために仮想資本曲線を検証します。
preview
母集団最適化アルゴリズム:Spiral Dynamics Optimization (SDO)アルゴリズム

母集団最適化アルゴリズム:Spiral Dynamics Optimization (SDO)アルゴリズム

本稿では、軟体動物の殻など自然界における螺旋軌道の構築パターンに基づく最適化アルゴリズム、Spiral Dynamics Optimization(SDO、螺旋ダイナミクス最適化)アルゴリズムを紹介します。著者らが提案したアルゴリズムを徹底的に修正し、改変しました。この記事では、こうした変更の必要性について考えてみたいと思います。
preview
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第5回):深層マルコフモデル

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第5回):深層マルコフモデル

この記事では、RSIインジケーターに単純なマルコフ連鎖を適用し、インジケーターが主要なレベルを通過した後の価格の挙動を観察します。NZDJPYペアで最も強い買いシグナルと売りシグナルは、RSIがそれぞれ11~20の範囲と71~80の範囲にあるときに生成されるという結論に達しました。データを操作して、保有するデータから直接学習した最適な取引戦略を作成する方法を説明します。さらに、遷移行列を最適に使用することを学習するためにディープニューラルネットワークを訓練する方法を説明します。
preview
母集団最適化アルゴリズム:荷電系探索(Charged System Search、CSS)アルゴリズム

母集団最適化アルゴリズム:荷電系探索(Charged System Search、CSS)アルゴリズム

この記事では、無生物の自然にヒントを得た別の最適化アルゴリズムである荷電系探索(CSS)アルゴリズムについて検討します。この記事の目的は、物理学と力学の原理に基づいた新しい最適化アルゴリズムを提示することです。
preview
リプレイシステムの開発 - 市場シミュレーション(第16回):新しいクラスシステム

リプレイシステムの開発 - 市場シミュレーション(第16回):新しいクラスシステム

もっと仕事を整理する必要があります。コードはどんどん大きくなっており、今やらなければ不可能になります。分割して征服しましょう。MQL5では、このタスクを実行するのに役立つクラスを使用することができますが、そのためにはクラスに関する知識が必要です。おそらく初心者を最も混乱させるのは継承でしょう。この記事では、これらのメカニズムを実用的かつシンプルな方法で使用する方法を見ていきます。
preview
初心者のためのMQL5によるSP500取引戦略

初心者のためのMQL5によるSP500取引戦略

MQL5を活用してS&P500指数を正確に予測する方法をご紹介します。古典的なテクニカル分析とアルゴリズム、そして長年の経験に裏打ちされた原理を組み合わせることで、安定性を高め、確かな市場洞察力を得られます。
preview
リプレイシステムの開発 - 市場シミュレーション(第13回):シミュレーターの誕生(III)

リプレイシステムの開発 - 市場シミュレーション(第13回):シミュレーターの誕生(III)

ここでは、次回以降の仕事に関連するいくつかの要素を簡略化します。シミュレーターが生成するランダム性を視覚化する方法も説明しましょう。
preview
知っておくべきMQL5ウィザードのテクニック(第09回):K平均法とフラクタル波の組み合わせ

知っておくべきMQL5ウィザードのテクニック(第09回):K平均法とフラクタル波の組み合わせ

K平均法では、まず無作為に生成されたクラスタ重心を使用するデータセットのマクロビューに焦点を当てたプロセスとしてデータポイントを集団化するアプローチを採用し、その後ズームインしてこれらの重心を調整してデータセットを正確に表現します。これを見て、その使用例をいくつか活用していきます。
preview
MQL5の圏論(第21回):LDAによる自然変換

MQL5の圏論(第21回):LDAによる自然変換

連載21回目となるこの記事では、自然変換と、線形判別分析を使ったその実装方法について引き続き見ていきます。前回同様、シグナルクラス形式でその応用例を紹介します。
preview
MQL5における修正グリッドヘッジEA(第4部):シンプルなグリッド戦略の最適化(I)

MQL5における修正グリッドヘッジEA(第4部):シンプルなグリッド戦略の最適化(I)

この第4部では、以前に開発したシンプルヘッジとシンプルグリッドエキスパートアドバイザー(EA)を再考します。最適な戦略の使用を目指し、数学的分析と総当り攻撃アプローチを通じてシンプルグリッドEAを改良することに焦点を移します。戦略の数学的最適化について深く掘り下げ、後の回でコーディングに基づく最適化を探求するための舞台を整えます。
preview
母集団最適化アルゴリズム:Stochastic Diffusion Search (SDS)

母集団最適化アルゴリズム:Stochastic Diffusion Search (SDS)

この記事では、ランダムウォークの原理に基づく非常に強力で効率的な最適化アルゴリズムである確SDS(Stochastic Diffusion Search、確率的拡散探索)について説明します。このアルゴリズムは、複雑な多次元空間で最適解を求めることができ、収束速度が速く、局所極値を避けることができるのが特徴です。
preview
季節性を利用した外国為替スプレッド取引

季節性を利用した外国為替スプレッド取引

この記事では、外国為替取引におけるスプレッド取引時に季節性要因を利用したレポートデータの生成および提供の可能性について検討します。
preview
一からの取引エキスパートアドバイザーの開発(第16部):Web上のデータにアクセスする(II)

一からの取引エキスパートアドバイザーの開発(第16部):Web上のデータにアクセスする(II)

Webからエキスパートアドバイザー(EA)にデータを入力する方法はそれほど明らかにはわかりません。MetaTrader 5が提供するすべての可能性を理解しなければ、そう簡単にはいきません。
preview
母集団最適化アルゴリズム:SSG(Saplings Sowing and Growing up、苗木の播種と育成)

母集団最適化アルゴリズム:SSG(Saplings Sowing and Growing up、苗木の播種と育成)

SSG(Saplings Sowing and Growing up、苗木の播種と育成)アルゴリズムは、様々な条件下で優れた生存能力を発揮する、地球上で最も回復力のある生物の1つからインスピレーションを得ています。
preview
母集団最適化アルゴリズム:Intelligent Water Drops (IWD)アルゴリズム

母集団最適化アルゴリズム:Intelligent Water Drops (IWD)アルゴリズム

この記事では、無生物由来の興味深いアルゴリズム、つまり川床形成プロセスをシミュレーションするIntelligent Water Drops (IWD)について考察しています。このアルゴリズムのアイデアにより、従来の格付けのリーダーであったSDSを大幅に改善することが可能になりました。いつものように、新しいリーダー(修正SDSm)は添付ファイルにあります。
preview
エキスパートアドバイザーのQ値の開発

エキスパートアドバイザーのQ値の開発

この記事では、エキスパートアドバイザー(EA)がストラテジーテスターで表示できる品質スコアを開発する方法を見ていきます。Van TharpとSunny Harrisという2つの有名な計算方法を見てみましょう。
preview
知っておくべきMQL5ウィザードのテクニック(第19回):ベイズ推定

知っておくべきMQL5ウィザードのテクニック(第19回):ベイズ推定

ベイズ推定とは、新しい情報が入手可能になったときに確率仮説を更新するためにベイズの定理を採用することです。これは直感的に時系列分析への適応につながるので、シグナルだけでなく、資金管理やトレーリングストップのためのカスタムクラスを構築する際に、これをどのように利用できるか見てみましょう。
preview
MQL5の圏論(第19回):自然性の正方形の帰納法

MQL5の圏論(第19回):自然性の正方形の帰納法

自然性の正方形の帰納法を考えることで、自然変換について考察を続けます。MQL5ウィザードで組み立てられたエキスパートアドバイザー(EA)の多通貨の実装には若干の制約があるため、スクリプトでデータ分類能力を紹介しています。主な用途は、価格変動の分類とその予測です。
preview
母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第2回)

母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第2回)

この記事では、自然界の生物の遺伝物質で起こる自然なプロセスをモデル化した2進数遺伝的アルゴリズム(binary genetic algorithm:BGA)を見ていきます。
preview
データサイエンスと機械学習(第21回):ニューラルネットワークと最適化アルゴリズムの解明

データサイエンスと機械学習(第21回):ニューラルネットワークと最適化アルゴリズムの解明

ニューラルネットワーク内部で使用される最適化アルゴリズムを解明しながら、ニューラルネットワークの核心に飛び込みます。この記事では、ニューラルネットワークの可能性を最大限に引き出し、モデルを精度と効率の新たな高みへと押し上げる重要なテクニックご紹介します。
preview
データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする

データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする

ローソク足パターンは、トレーダーが市場の心理を理解し、金融市場におけるトレンドを特定するのに役立ちます。これにより、より情報に基づいた取引判断が可能となり、より良い成果につながる可能性があります。本記事では、AIモデルとローソク足パターンを組み合わせて最適な取引パフォーマンスを実現する方法を探っていきます。
preview
非定常過程と偽回帰

非定常過程と偽回帰

この記事では、モンテカルロシミュレーションを用いて非定常過程に回帰分析を適用しようとすると、偽回帰が発生することを示しています。
preview
ブレインストーム最適化アルゴリズム(第1部):クラスタリング

ブレインストーム最適化アルゴリズム(第1部):クラスタリング

この記事では、「ブレインストーミング」と呼ばれる現象にヒントを得た、BSO (Brain Storm Optimization)と呼ばれる革新的な最適化手法を見ていきます。また、BSO法が適用するマルチモーダル最適化問題を解くための新しいアプローチについても説明します。これにより、部分集団の数を事前に決定することなく、複数の最適解を見つけることができるのです。K-MeansとK-Means++のクラスタリング法も検討します。
preview
MQL5における予測および分類評価のためのリサンプリング手法

MQL5における予測および分類評価のためのリサンプリング手法

本記事では、1つのデータセットを訓練(学習)用と検証用の両方として使用するモデル評価手法について、理論と実装の両面から検討します。
preview
Across Neighbourhood Search (ANS)

Across Neighbourhood Search (ANS)

この記事では、問題の詳細と検索空間内の環境のダイナミクスを考慮できる柔軟でインテリジェントな最適化手法の開発における重要なステップとしてのANSアルゴリズムの可能性を明らかにします。
preview
PythonとMQL5における局所的特徴量選択の適用

PythonとMQL5における局所的特徴量選択の適用

この記事では、Narges Armanfardらの論文「Local Feature Selection for Data Classification」で提案された特徴量選択アルゴリズムを紹介します。このアルゴリズムはPythonで実装されており、MetaTrader 5アプリケーションに統合可能なバイナリ分類モデルの構築に使用されます。
preview
リプレイシステムの開発(第53回):物事は複雑になる(V)

リプレイシステムの開発(第53回):物事は複雑になる(V)

今回は、あまり理解されていない重要なトピックを取り上げます。「カスタムイベント」です。これは危険です。これらの要素の長所と短所を解説します。このトピックは、MQL5やその他の言語でプロのプログラマーになりたい人にとって重要な鍵となります。ここではMQL5とMetaTrader 5に焦点を当てます。
preview
知っておくべきMQL5ウィザードのテクニック(第26回):移動平均とハースト指数

知っておくべきMQL5ウィザードのテクニック(第26回):移動平均とハースト指数

ハースト指数は、時系列データが長期間にわたってどれだけ自己相関しているかを示す指標です。ハースト指数は、時系列データの長期的な特性を捉えることがわかっているため、経済や金融に限らず、幅広い時系列分析において重要な役割を果たします。本稿では、ハースト指数を移動平均線と組み合わせることで、トレーダーにとって有用なシグナルをどのように得られるかを検討し、その潜在的なメリットに焦点を当てます。
preview
リプレイシステムの開発—市場シミュレーション(第3回):設定の調整(I)

リプレイシステムの開発—市場シミュレーション(第3回):設定の調整(I)

まずは現状を明らかにすることから始めましょう。今やらなければ、すぐに問題になります。
preview
パターン検索への総当たり攻撃アプローチ(第V部):新鮮なアングル

パターン検索への総当たり攻撃アプローチ(第V部):新鮮なアングル

この記事では、私が長い時間をかけてたどり着いた、アルゴリズム取引に対するまったく異なるアプローチを紹介します。もちろん、これはすべて私の総当たり攻撃プログラムに関係しています。これには、複数の問題を同時に解決できるように多くの変更が加えられています。とはいえ、この記事はより一般的で可能な限りシンプルなものであるため、総当たり攻撃について何も知らない読者にも適しています。
preview
リプレイシステムの開発 - 市場シミュレーション(第9回):カスタムイベント

リプレイシステムの開発 - 市場シミュレーション(第9回):カスタムイベント

ここでは、カスタムイベントがどのようにトリガーされ、指標でどのようにリプレイ/シミュレーションサービスの状態がレポートされるかを見ていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第13回):ExpertSignalクラスのためのDBSCAN

知っておくべきMQL5ウィザードのテクニック(第13回):ExpertSignalクラスのためのDBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)は、データをグループ化する教師なし形式であり、入力パラメータをほとんど必要としません。入力パラメータは2つだけであり、K平均法などの他のアプローチと比較すると利点が得られます。ウィザードで組み立てたEAを使用してテストし、最終的に取引するために、これがどのように建設的であり得るかを掘り下げます。
preview
Pythonでの見せかけの回帰

Pythonでの見せかけの回帰

見せかけの回帰は、2つの時系列がまったくの偶然で高い相関を示し、回帰分析で誤解を招く結果をもたらす場合に発生します。このような場合、変数が関連しているように見えても、その相関関係は偶然であり、モデルの信頼性は低くなります。
preview
MQL5における数値予測を強化するアンサンブル法

MQL5における数値予測を強化するアンサンブル法

この記事では、MQL5における複数のアンサンブル学習手法の実装を紹介し、それらの手法がさまざまな状況下でどの程度有効かを検証します。