

マウンテンチャートとアイスバーグチャート
MetaTrader 5プラットフォームに新しいチャートタイプを追加するというアイデアはいかがでしょうか。このプラットフォームには他のプラットフォームにあるものがいくつかないという声もあります。しかし、実際のところ、MetaTrader 5は他の多くのプラットフォームではできないこと(少なくとも簡単にはできないこと)ができる、非常に実用的なプラットフォームです。


MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第24部): 未決取引リクエストの使用 - 初期実装(ポジションのオープン)
本稿では、注文の値にいくつかのデータを格納し、マジックナンバーを配置し、保留中リクエストの実装を開始します。概念を確認するために、サーバエラーを受信して、待機後に繰り返しリクエストを送信する必要がある際にマーケットポジションを開くための最初のテスト保留中リクエストを作成しましょう。


ファジー理論を使用しインディケータを作成する簡単な例
本稿はファイナンシャルマーケット分析にファジー理論の概念を実用的に適用することに特化しています。エンベロープインディケータ上で2つのファジールールに基づくインディケータ生成シグナルの例を提供します。作成されたインディケータは複数のインディケータバッファを使用します。7個のバッファを計算に、5個のバッファをチャート表示に、2個をカラーバッファとします。


MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第22部): 取引クラス - 基本取引クラス、制限の検証
この記事では、ライブラリベースの取引クラスの開発を開始し、最初のバージョンに取引操作を行うためのアクセス許可の初期検証を追加します。さらに、基本取引クラスの機能とコンテンツをわずかながら拡張します。


貨幣価格変動に対するマクロ経済データの影響の回帰分析
本稿ではマクロ経済統計に対する重回帰分析のアプリケーションについか考察します。また通貨ペア EURUSD の例に基づく為替レートにおけるその統計の影響評価の洞察も提供します。その評価により初心者トレーダーにも利用可能となるファンダメンタル分析の自動化ができます。


トレードにおけるOLAPの適用(パート3):トレード戦略の開発の相場分析
この記事では、トレードに適用される OLAP テクノロジを引き続き取り扱います。 最初の 2 つの記事で紹介した機能を拡張します。 今回は、クオートの運用分析について検討します。シェイプセレクタ 集計されたヒストリーデータに基づいて、トレード戦略に関する仮説を打ち出し、テストします。 この記事では、バーパターンとアダプティブトレードを研究するためのEAを紹介します。

データサイエンスと機械学習(第04回):現在の株式市場の暴落を予測する
今回は、米国経済のファンダメンタルズに基づいて、私たちのロジスティックモデルを使って株式市場の暴落の予測を試みます。NETFLIXとAPPLEが私たちが注目する銘柄です、2019年と2020年の過去の市場の暴落を使って、モデルが現在の破滅と暗雲でどのように機能するか見てみましょう。

価格変動モデルとその主な規定(第1回)。最もシンプルなモデルバージョンとその応用
この記事は、数学的に厳密な値動きと市場機能の理論の基礎を提供するものです。現在に至るまで、数学的に厳密な値動き理論は存在しません。その代わりに、「あるパターンの後に、ある方向に価格が動く」という経験則に基づいた仮定で対処する必要がありました。もちろん、これらの仮定は統計にも理論にも裏付けられていません。


MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第2部)過去の注文と取引のコレクション
最初の部分では、MetaTrader 5とMetaTrader 4プラットフォーム用のプログラムの開発を単純化するための大規模なクロスプラットフォームライブラリの作成を始めました。過去の注文と取引、および市場の注文とポジションに関するデータを格納するための基本オブジェクトであるCOrder抽象オブジェクトを作成しました。ここでは、口座履歴データをコレクションに格納するために必要なすべてのオブジェクトを開発します。

クラスター分析(第I部):インジケーターラインの傾きをマスターする
クラスター分析は、人工知能の最も重要な要素の1つです。この記事では、指標の傾きのクラスター分析を適用して、市場が横ばいであるかトレンドに従っているのかを判断するためのしきい値の取得を試みます。

取引のための組合せ論と確率論(第I部):基本
この連載では、確率論の実用的応用を見つけて、取引と価格設定のプロセスの説明を試みます。最初の記事では、組合せ論と確率の基礎を調べ、確率論の枠組みでフラクタルを適用する方法の最初の例を分析します。


トレードにおけるOLAPの適用(パート2):インタラクティブな多次元データ分析結果の可視化
この記事では、OLAP技術を使用して口座ヒストリーとトレードレポートの処理に設計されたMQLプログラム用のインタラクティブなグラフィカルインタフェースの作成について考察します。 視覚的な結果を得るために、最大化可能でスケーラブルなウィンドウ、ラバーコントロールの適応レイアウト、および図を表示するための新しいコントロールを使用します。 ビジュアライゼーション関数を提供するために、座標軸に沿った変数の選択と、集計関数、ダイアグラムタイプ、並べ替えオプションの選択を含むGUIを実装します。

ONNX統合の課題を克服する
ONNXは、異なるプラットフォーム間で複雑なAIコードを統合するための素晴らしいツールです。ただし、この素晴らしいツールを最大限に活用するためにはいくつかの課題に対処する必要があります。この記事では、読者が直面する可能性のある一般的な問題と、それを軽減する方法について説明します。


DoEasyライブラリの時系列(第39部): ライブラリに基づいた指標 - データイベントと時系列イベントの準備
本稿では、DoEasyライブラリを適用して複数の銘柄の複数期間の指標を作成する方法について説明します。指標内で機能するライブラリクラスを準備し、指標のデータソースとして使用される時系列の作成をテストします。時系列イベントの作成と送信も実装します。


MQL5-RPC. MQL5からのリモートプロシージャコール:ウェブサービスアクセスと、利益のためのXML-RPC ATC アナライザー
この記事は、リモートプロシージャコールを可能にするMQL5-RPCフレームワークを紹介します。XML-RPCの基礎から始め、MQL5の実装、そして、二つの実例を紹介します。最初の例は、外部のウェブサービスを使用するというもので、二つ目は、XML-RPC ATC 2011 Analyzerサービスのクライアントの例です。もし、ATC 2011からの異なる統計の実装や分析方法に興味のある場合、この記事はうってつけだと思います。

MQL5での行列およびベクトル演算
行列とベクトルがMQL5に導入され、数学的な解決策による効率的な操作が可能になりました。これらの新しい型は、数学表記に近い簡潔でわかりやすいコードを作成するための組み込みメソッドを提供します。配列は広範な機能を提供しますが、行列の方がはるかに効率的である場合が多くあります。

ニューラルネットワークが簡単に(第3回): コンボリューションネットワーク
ニューラルネットワークの話題の続きとして、畳み込み型ニューラルネットワークの考察を提案します。 この種のニューラルネットワークは、通常、視覚的なイメージの分析に適用されます。 本稿では、これらのネットワークの金融市場への応用について考察します。

ニューラルネットワークが簡単に(第6回): ニューラルネットワークの学習率を実験する
これまで、様々な種類のニューラルネットワークをその実装とともに考察してきました。 すべての場合において、ニューラルネットワークは、学習率を選択する必要があるグラディエントディーセント法を用いてトレーニングされました。 今回は、正しく選択されたレートの重要性とニューラルネットワーク学習への影響を例を用いて示したいと思います。

知っておくべきMQL5ウィザードのテクニック(第06回):フーリエ変換
ジョセフ・フーリエによって導入されたフーリエ変換は、複雑なデータの波動点を単純な構成波に分解する手段です。この記事では、トレーダーにとって有益なこの機能を見ていきます。


2013 年第一四半期 MQL5マーケット実績
設立以来、トレーディングロボットおよびテクニカルインディケータのストアである MQL5 「マーケット」はすでに580件のプロダクツを発表した250名以上の開発者を魅了してきました。2013 年第一四半期は自分のプロダクツを販売することでよい収益を上げることのできた 一部の MQL5 「マーケット」販売者にとってひじょうな成功の時期となりました。


DoEasyライブラリの時系列(第43部): 指標バッファオブジェクトクラス
この記事では、DoEasyライブラリに基づくカスタム指標プログラムを作成しながら、抽象バッファオブジェクトの子孫としての指標バッファオブジェクトクラスの開発を考察し、宣言を簡略化して指標バッファを操作します。

ONNXをマスターする:MQL5トレーダーにとってのゲームチェンジャー
機械学習モデルを交換するための強力なオープン標準形式であるONNXの世界に飛び込んでみましょう。ONNXを活用することでMQL5のアルゴリズム取引にどのような変革がもたらされ、トレーダーが最先端のAIモデルをシームレスに統合し、戦略を新たな高みに引き上げることができるようになるかがわかります。クロスプラットフォーム互換性の秘密を明らかにし、MQL5取引の取り組みでONNXの可能性を最大限に引き出す方法を学びましょう。ONNXをマスターするためのこの包括的なガイドで取引ゲームを向上させましょう。


MQL5 と MQL4 の選択とナビゲーションユーティリティ: 「ホームワーク」タブの追加とグラフィックオブジェクトの保存
この記事では、必要なシンボルを選択するためのタブを追加することで、以前に作成されたユーティリティの関数を拡張していきます。 また、特定のシンボルチャートで作成したグラフィカルオブジェクトを保存する方法についても説明します。 また、特定のウェブサイトを使用して事前に選択されたシンボルだけで機能する方法を提案します。


スペクトラム分析の構築
本稿は、MQL5言語のグラフィカルオブジェクト使用が可能なバリアントを知っていただくのが目的です。それはグラフィカルオブジェクトを使用し、シンプルなスペクトラム分析を管理するパネルの実装を行うインディケータを分析します。読者のみなさんには本稿をとおしてMQL5の基本を知っていただきたいと思います。


トレーディングシステム作成のための判別分析の利用
トレーディングシステムを開発するとき、たいていインディケータとそのシグナルの最良の組合せを選ぶのに問題が起こります。判別分析はそのような組合せを見つける方法の一つです。本稿では、マーケットデータ収集のための EA 開発例を提供し、f Statistica ソフトウェアにおいてFOREXマーケットに対する予測モデル構築のための判別分析の使用を解説します。


データ配列間の相関を解析するためのCGraphicに基づくPairPlot グラフ (時系列)
テクニカル分析に複数の時系列を比較することは、適切なツールを必要としますが一般的なタスクです。 この記事では、グラフィカル解析のツールを開発し、2つ以上の時系列間の相関関係を検出します。


取引のための組合せ論と確率論(第III部): 初めての数学モデル
前に説明したトピックの論理的な続きは、取引タスクのための多機能数学モデルの開発です。本稿では、フラクタルを記述する最初の数学モデルの開発に関連するプロセス全体を最初から説明します。このモデルは重要な構成要素になるもので、多機能で普遍的である必要があります。それは、このアイデアをさらに発展させるための理論的基礎を構築します。

ニューラルネットワークが簡単に(第17部):次元削減
今回は、人工知能モデルについて引き続き説明します。具体的には、教師なし学習アルゴリズムについて学びます。クラスタリングアルゴリズムの1つについては既に説明しました。今回は、次元削減に関連する問題を解決する方法のバリエーションを紹介します。

母集団最適化アルゴリズム:ホタルアルゴリズム(FA)
今回は、ホタルアルゴリズム(FA)という最適化手法について考えてみます。修正により、このアルゴリズムは部外者から真の評価表リーダーへと変貌を遂げました。


トレード戦略の統計的実行
望まない価格動向からオープンなポジティブスワップポジションを統計的に保護するアルゴリズム。本稿は、オープンポジションの方向とは逆に動く価格の潜在的リスクを補うことができるキャリートレード保護戦略のバリアントを取り上げています。

高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択
本稿では、モデルの一般化可能性を向上させることを目的としたデータ変換への可能なアプローチの1つについて説明し、CatBoostモデルの抽出と選択についても説明します。

データサイエンスと機械学習(第06回):勾配降下法
勾配降下法は、ニューラルネットワークや多くの機械学習アルゴリズムの訓練において重要な役割を果たします。これは、その印象的な成果にもかかわらず、迅速でインテリジェントなアルゴリズムであり、多くのデータサイエンティストによっていまだに誤解されています。


MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第5部): 取引イベントのクラスとコレクション、プログラムへのイベント送信
前の記事では、MetaTrader 5とMetaTrader 4プラットフォーム用のプログラムの開発を単純化するための大規模なクロスプラットフォームライブラリの作成を始めました。第4部では、口座の取引イベントの追跡をテストしました。本稿では、取引イベントクラスを開発してイベントコレクションに配置します。そこからは、これらはエンジンライブラリの基本オブジェクトとコントロールプログラムチャートに送信されます。


非加法的統計分布構造解析への固有座標法の応用
応用統計学の主な問題は受け入れる統計仮説の問題ですそれはながらく解決不可能と考えられていました。しかし、固有座標法の登場により状況は一変しました。それはシグナルの構造学にとってすぐれた力強いツールであり、近代的な応用統計学手法を用いることで、可能なこと以上のものを見極めることができるようになります。本稿はこの手法の実践的使用に着目し、MQL5によるプログラムの説明をします。また Hilhorst と Schehrによって紹介される分布例を交えて関数同定の問題も取り上げます。


トレードにおけるOLAPの適用(パート1):多次元データのオンライン分析
この記事では、多次元データ(OLAP)のオンライン分析のフレームワークを作成する方法、およびMQLで実装する方法、およびトレード口座ヒストリー処理の例を使用してMetaTrader環境でそのような分析を適用する方法について説明します。


パターンと例(第I部): マルチトップ
これは、アルゴリズム取引の枠組みにおける反転パターンに関連する連載の最初の記事です。まず、最も興味深いパターンファミリーから始めます。これは、ダブルトップパターンとダブルボトムパターンに由来するものです。

時系列マイニング用データラベル(第3回):ラベルデータの利用例
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。