リプレイシステムの開発(第56回):モジュールの適応
モジュール同士はすでに適切に連携していますが、リプレイサービスでマウスポインタを使用しようとするとエラーが発生します。次のステップに進む前に、この問題を修正する必要があります。さらに、マウスインジケーターのコードにある別の問題も修正します。この修正によって、今回のバージョンは最終的に安定し、洗練されたものになります。
知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択
損失関数は、機械学習アルゴリズムの重要な指標です。これは、与えられたパラメータセットが目標に対してどれだけうまく機能しているかを定量的に評価し、学習プロセスにフィードバックを提供する役割を果たします。本記事では、MQL5のカスタムウィザードクラスを使って、損失関数のさまざまな形式を探っていきます。
雲モデル最適化(ACMO):実践編
この記事では、ACMO(Atmospheric Cloud Model Optimization:雲モデル最適化)アルゴリズムの実装について、さらに詳しく掘り下げていきます。特に、低気圧領域への雲の移動および水滴の初期化と雲間での分布を含む降雨シミュレーションという2つの重要な側面に焦点を当てます。また、雲の状態を管理し、環境との相互作用を適切に保つために重要な役割を果たす他の手法についても紹介します。
MQL5における段階的特徴量選択
この記事では、MQL5で実装された段階的特徴量選択の修正バージョンを紹介します。このアプローチは、Timothy Masters著の「Modern Data Mining Algorithms in C++ and CUDA C」で概説されている手法に基づいています。
プライスアクション分析ツールキットの開発(第6回):Mean Reversion Signal Reaper
いくつかの概念は一見するとシンプルに思えるかもしれませんが、実際にそれを形にするのは想像以上に難しいことがあります。この記事では、平均回帰(Mean Reversion)戦略を用いて市場を巧みに分析するエキスパートアドバイザー(EA)の自動化に取り組んだ、革新的なアプローチをご紹介します。この魅力的な自動化プロセスの奥深さを、一緒に紐解いていきましょう。
リプレイシステムの開発(第39回):道を切り開く(III)
開発の第2段階に進む前に、いくつかのアイデアを修正する必要があります。MQL5に必要なことをさせる方法をご存知ですか。ドキュメントに書かれている以上のことをしようとしたことはありますか。そうでないなら、準備をしましょう。ここでは、ほとんどの人が普段やらないことをやるからです。
亀甲進化アルゴリズム(TSEA)
これは、亀の甲羅の進化にインスパイアされたユニークな最適化アルゴリズムです。TSEAアルゴリズムは、問題に対する最適解を表す構造化された皮膚領域が徐々に形成される様子をエミュレートします。最良の解は「硬く」なり、外側に近い位置に配置され、成功しなかった解は「柔らかい」ままで内側に留まります。このアルゴリズムは、質と距離に基づく解のクラスタリングを利用し、成功率の低い選択肢を保持しながら、柔軟性と適応性を提供します。
ALGLIBライブラリの最適化手法(第1回):
この記事では、MQL5におけるALGLIBライブラリの最適化手法について紹介します。記事には、最適化問題を解決するためにALGLIBを使用するシンプルで分かりやすい例が含まれており、これらの手法をできるだけ身近に感じられるように構成されています。BLEIC、L-BFGS、NSといったアルゴリズムのつながりを詳しく見ていき、それらを使って簡単なテスト問題を解いてみます。
MQL5取引ツールキット(第7回):直近でキャンセルされた予約注文に関する関数で履歴管理EX5ライブラリを拡張
直近でキャンセルされた予約注文を処理する関数に焦点を当て、History Manager EX5ライブラリの最終モジュールの作成を完了する方法を学習します。これにより、MQL5を使用してキャンセルされた予約注文に関連する重要な詳細を効率的に取得して保存するためのツールが提供されます。
ALGLIBライブラリの最適化手法(第2回):
この記事では、ALGLIBライブラリにおける残りの最適化手法の検討を続けていきます。特に、複雑な多次元関数でのテストに重点を置きます。これにより、各アルゴリズムの効率性を評価できるだけでなく、さまざまな条件下における強みと弱みを明らかにすることができます。
MQL5取引ツールキット(第5回):ポジション関数による履歴管理EX5ライブラリの拡張
エクスポート可能なEX5関数を作成して、過去のポジションデータを効率的にクエリおよび保存する方法を解説します。このステップバイステップのガイドでは、直近にクローズされたポジションの主要なプロパティを取得するモジュールを開発し、HistoryManagement EX5ライブラリを拡張していきます。対象となるプロパティには、純利益、取引時間、ピップ単位でのストップロスやテイクプロフィット、利益値、その他多くの重要な情報が含まれます。
Developing a Replay System (Part 36): Making Adjustments (II)
One of the things that can make our lives as programmers difficult is assumptions. In this article, I will show you how dangerous it is to make assumptions: both in MQL5 programming, where you assume that the type will have a certain value, and in MetaTrader 5, where you assume that different servers work the same.
リプレイシステムの開発(第45回):Chart Tradeプロジェクト(IV)
この記事の主な目的は、C_ChartFloatingRADクラスの紹介と説明です。Chart Trade指標は、非常に興味深い方法で機能しています。チャート上のオブジェクトの数はまだ少ないものの、期待通りの機能を実現しています。指標の値は編集可能ですが、その実現方法については疑問が残るかもしれません。この記事を読めば、これらの疑問が解消されるでしょう。
最適化アルゴリズムの効率における乱数生成器の品質の役割
この記事では、メルセンヌ・ツイスタ乱数生成器を取り上げ、MQL5の標準的な乱数生成器と比較します。また、乱数生成器の品質が最適化アルゴリズムの結果に与える影響についても調べます。
MQL5で取引管理者パネルを作成する(第9回):コード編成(I)
このディスカッションでは、大規模なコードベースを扱う際に直面する課題について掘り下げます。MQL5におけるコード構成のベストプラクティスを紹介し、取引管理パネルのソースコードの可読性と拡張性を向上させるための実践的なアプローチを実装します。また、他の開発者がアルゴリズム開発で活用できる再利用可能なコードコンポーネントの開発も目指しています。ぜひ最後までお読みいただき、ご意見をお寄せください。
プライスアクション分析ツールキットの開発(第4回):Analytics Forecaster EA
チャート上に表示された分析済みのメトリックを見るだけにとどまらず、Telegramとの統合によってブロードキャストを拡張するという、より広い視点へと移行しています。この機能強化により、Telegramアプリを通じて、重要な結果がモバイルデバイスに直接配信されるようになります。この記事では、この新たな取り組みを一緒に探っていきましょう。
リプレイシステムの開発(第43回):Chart Traderプロジェクト(II)
プログラミングを学びたいと夢見る人のほとんどは、実際に自分が何をしているのかわかっていません。彼らの活動は、ある方法で物事を創造しようとすることから成っています。しかし、プログラミングとは、適切な解決策を仕立てることではありません。このようなやり方は、解決策よりも多くの問題を引き起こす可能性があります。ここでは、より高度で、それゆえに異なることをします。
アンサンブル学習におけるゲーティングメカニズム
この記事では、アンサンブルモデルの検討をさらに進め、「ゲート」という概念に注目し、モデル出力を組み合わせることで予測精度や汎化性能の向上にどのように役立つかを解説します。
MQL5とデータ処理パッケージの統合(第3回):データ可視化の強化
この記事では、基本的なチャートの枠を超え、インタラクティブ性、データの層化、ダイナミックな要素といった機能を組み込むことで、トレーダーがトレンド、パターン、相関関係をより効果的に探求できるようにする、データ可視化の高度化について解説します。
リプレイシステムの開発(第42回):Chart Traderプロジェクト(I)
もっと面白いものを作りましょう。ネタバレはしたくないので、理解を深めるために記事を読んでください。リプレイ/シミュレーターシステムの開発に関する本連載の最初の段階から、私は、開発中のシステムと実際の市場の両方で同じようにMetaTrader 5プラットフォームを使用することがアイディアであると述べてきました。これが適切におこなわれることが重要です。ある道具を使用して訓練して戦い方を学んだ末、戦いの最中に別の道具を使用しなければならないというようなことは誰もしたくありません。
知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習
SARSAは、State-Action-Reward-State-Actionの略で、強化学習を実装する際に使用できる別のアルゴリズムです。Q学習とDQNで見たように、ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、これを単なる訓練メカニズムとしてではなく、独立したモデルとしてどのように実装できるかを検討します。
プライスアクション分析ツールキットの開発(第17回):TrendLoom EAツール
プライスアクションを観察し、取引をおこなう立場から言うと、複数の時間枠でトレンドが確認された場合、その方向にトレンドが継続することがよくあります。ただし、トレンドがどれくらい続くかは一定ではなく、ポジションを長期で保有するのか、それともスキャルピングのような短期取引をおこなうのかといったトレーダーのスタイルによって異なります。トレンド確認に使用する時間枠の選択は非常に重要な役割を果たします。以下の記事では、ワンクリックや定期的な更新によって、複数の時間足にわたる全体的なトレンドを自動で分析できる便利なシステムを紹介しています。ぜひご覧ください。
リプレイシステムの開発(第54回):最初のモジュールの誕生
この記事では、リプレイ/シミュレーターシステムで使用するための、他の目的にも汎用的に使用できる、実際に機能するモジュールの最初のものを組み立てる方法について説明します。マウスモジュールです。
汎用MLP近似器に基づくエキスパートアドバイザー
この記事では、機械学習の深い知識がなくても利用できる、取引EAでのニューラルネットワークの簡単でアクセスしやすい使用方法を紹介しています。この方法では、目的関数の正規化を省略できるほか、「重みの爆発」や「収束停止」といった問題を解消し、直感的な学習と結果の視覚的な管理を可能にしています。
人工部族アルゴリズム(ATA)
本記事では、状況に応じて適応的に動作する独自の二重行動システムを備えた進化的手法、人工部族アルゴリズム(ATA: Artificial Tribe Algorithm)の主要要素と革新点について、詳細に説明します。ATAは、個体学習と社会的学習を組み合わせ、探索には交叉を用い、局所最適に陥った際には移動によって新たな解を探索するためのアルゴリズムです。
知っておくべきMQL5ウィザードのテクニック(第54回):SACとテンソルのハイブリッドによる強化学習
Soft Actor Critic (SAC)は、以前の記事で紹介した強化学習アルゴリズムです。その際には、効率的にネットワークを学習させる手法としてPythonやONNXの活用についても触れました。今回は、このアルゴリズムを改めて取り上げ、Pythonでよく使われるテンソルや計算グラフを活用することを目的としています。
リプレイシステムの開発(第73回):異例のコミュニケーション(II)
この記事では、インジケーターとサービス間でリアルタイムに情報を伝達する方法について解説し、また時間軸を変更した際に発生しうる問題の原因とその解決方法について理解を深めます。おまけとして、最新バージョンのリプレイ/シミュレーションアプリへのアクセスも提供します。
母集団最適化アルゴリズム:極値から抜け出す力(第I部)
本稿では、母集団最適化アルゴリズムの挙動を、集団の多様性が低い場合に効率的に極小値を脱出し、最大値に到達する能力という観点から検証することを目的としたユニークな実験を紹介します。この方向性で取り組むことで、ユーザーが設定した座標を出発点として、どの特定のアルゴリズムが検索を成功させることができるのか、またその成功にどのような要因が影響するのかについて、さらなる洞察が得られるでしょう。
集団型ADAM(適応モーメント推定法)
この記事では、よく知られていて人気のあるADAM勾配最適化手法を集団アルゴリズムに変換し、さらにハイブリッド個体を導入して修正した方法を紹介しています。この新しいアプローチでは、確率分布を使って成功した判断の要素を組み合わせたエージェントを作ることができます。大きな革新点は、有望な解からの情報を適応的に蓄積するハイブリッド集団個体を形成することであり、それによって複雑な多次元空間での探索効率が高まります。
3D反転パターンに基づくアルゴリズム取引
3Dバーによる自動売買の新しい世界を発見します。多次元の価格バー上で自動売買ロボットはどのように見えるのでしょうか。3Dバーの「黄色のクラスタ」はトレンドの反転を予測できるのでしょうか。多次元取引はどのように見えるのでしょうか。
人工蜂の巣アルゴリズム(ABHA):理論と方法
この記事では、2009年に開発された人工蜂の巣アルゴリズム(ABHA)について説明します。このアルゴリズムは、連続的な最適化問題を解決することを目的としています。この記事では、蜂がそれぞれの役割を担って効率的に資源を見つける蜂のコロニーの行動から、ABHAがどのようにインスピレーションを得ているかを探ります。
知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み
制限ボルツマンマシンは、1980年代半ば、計算資源が非常に高価だった時代に開発されたニューラルネットワークの一種です。当初は、入力された訓練データセットの次元を削減し、隠れた確率や特性を捉えるために、ギブスサンプリングとコントラストダイバージェンス(Contrastive Divergence)に依存していました。RBMが予測用の多層パーセプトロンに価格を「埋め込む」場合、バックプロパゲーションがどのように同様の性能を発揮できるかを検証します。
リプレイシステムの開発(第67回):コントロールインジケーターの改良
この記事では、コードを少し手直しすることで、どのような改善が得られるかを見ていきます。今回の改良は、コードの簡素化を図り、MQL5ライブラリの呼び出しをより活用し、そして何よりも、将来的に開発する可能性のある他のプロジェクトでも、より安定して安全かつ使いやすくなることを目的としています。
知っておくべきMQL5ウィザードのテクニック(第51回):SACによる強化学習
Soft Actor Criticは、Actorネットワーク1つとCriticネットワーク2つ、合計3つのニューラルネットワークを用いる強化学習アルゴリズムです。これらのモデルは、CriticがActorネットワークの予測精度を高めるように設計された、いわばマスタースレーブの関係で連携します。本連載では、ONNXの導入も兼ねて、こうした概念を、ウィザード形式で構築されたエキスパートアドバイザー(EA)内のカスタムシグナルとしてどのように実装・活用できるかを探っていきます。
プライスアクション分析ツールキットの開発(第18回):クォーターズ理論の紹介(III) - Quarters Board
この記事では、元のQuarters Scriptを改良し、「Quarters Board」というツールを導入しています。これにより、コードを編集し直すことなく、チャート上でクォーターレベルを直接オン・オフできるようになります。特定のレベルを簡単に有効化・無効化できるほか、エキスパートアドバイザー(EA)はトレンド方向に関するコメントも提供し、市場の動きをより理解しやすくします。
プライスアクション分析ツールキットの開発(第20回):External Flow (IV) — Correlation Pathfinder
Correlation Pathfinderは、「プライスアクション分析ツールキット開発」連載の一環として、通貨ペアの動的な関係を理解するための新しいアプローチを提供します。このツールはデータの収集と分析を自動化し、EUR/USDやGBP/USDなどのペアがどのように連動して動いているかを可視化します。リスク管理を強化し、より効果的にチャンスを捉えるための実用的かつリアルタイムな情報で、取引戦略のレベルを引き上げましょう。
リプレイシステムの開発(第49回):物事は複雑になる(I)
この記事では、物事は少し複雑になります。前回の記事で紹介した内容を使用して、ユーザーが独自のテンプレートを使用できるようにテンプレート ファイルを開きます。ただし、MetaTrader 5の負荷を軽減するために指標を改良していく予定なので、変更は徐々におこなっていく予定です。