プライスアクション分析ツールキットの開発(第6回):Mean Reversion Signal Reaper
いくつかの概念は一見するとシンプルに思えるかもしれませんが、実際にそれを形にするのは想像以上に難しいことがあります。この記事では、平均回帰(Mean Reversion)戦略を用いて市場を巧みに分析するエキスパートアドバイザー(EA)の自動化に取り組んだ、革新的なアプローチをご紹介します。この魅力的な自動化プロセスの奥深さを、一緒に紐解いていきましょう。
リプレイシステムの開発(第40回):第2段階の開始(I)
今日は、リプレイ/シミュレーターシステムの新しい段階について話しましょう。この段階で、会話は本当に面白くなり、内容もかなり濃くなります。記事を熟読し、そこに掲載されているリンクを利用することを強くお勧めします。そうすることで、内容をより深く理解することができます。
リプレイシステムの開発(第64回):サービスの再生(V)
この記事では、コード内の2つのエラーを修正する方法について説明します。ただし、初心者プログラマーの皆さんに、物事が必ずしも期待どおりに進むとは限らないことを理解してもらえるよう、できるだけわかりやすく解説したいと思います。いずれにせよ、これは学びの機会です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。ここで紹介する内容は教育目的のみに限定されており、提示された概念を探求すること以外の目的でこのアプリケーションを最終的な文書と見なすべきではありません。
人工部族アルゴリズム(ATA)
本記事では、状況に応じて適応的に動作する独自の二重行動システムを備えた進化的手法、人工部族アルゴリズム(ATA: Artificial Tribe Algorithm)の主要要素と革新点について、詳細に説明します。ATAは、個体学習と社会的学習を組み合わせ、探索には交叉を用い、局所最適に陥った際には移動によって新たな解を探索するためのアルゴリズムです。
雲モデル最適化(ACMO):実践編
この記事では、ACMO(Atmospheric Cloud Model Optimization:雲モデル最適化)アルゴリズムの実装について、さらに詳しく掘り下げていきます。特に、低気圧領域への雲の移動および水滴の初期化と雲間での分布を含む降雨シミュレーションという2つの重要な側面に焦点を当てます。また、雲の状態を管理し、環境との相互作用を適切に保つために重要な役割を果たす他の手法についても紹介します。
リプレイシステムの開発(第51回):物事は複雑になる(III)
この記事では、MQL5プログラミングの分野で最も難解な問題の1つである、チャートIDを正しく取得する方法と、オブジェクトがチャートにプロットされない場合がある理由について解説します。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
リプレイシステムの開発(第56回):モジュールの適応
モジュール同士はすでに適切に連携していますが、リプレイサービスでマウスポインタを使用しようとするとエラーが発生します。次のステップに進む前に、この問題を修正する必要があります。さらに、マウスインジケーターのコードにある別の問題も修正します。この修正によって、今回のバージョンは最終的に安定し、洗練されたものになります。
PythonとMQL5を使用した特徴量エンジニアリング(第2回):価格の角度
MQL5フォーラムには、価格変動の傾斜を計算する方法についての支援を求める投稿が多数あります。この記事では、取引したい市場における価格の変化によって形成される角度を計算する1つの方法を説明します。さらに、この新しい特徴量の設計に追加の労力と時間を投資する価値があるかどうかについてもお答えします。M1でUSDZARペアを予測する際に、価格の傾斜によってAIモデルの精度が向上するかどうかを調査します。
プライスアクション分析ツールキットの開発(第17回):TrendLoom EAツール
プライスアクションを観察し、取引をおこなう立場から言うと、複数の時間枠でトレンドが確認された場合、その方向にトレンドが継続することがよくあります。ただし、トレンドがどれくらい続くかは一定ではなく、ポジションを長期で保有するのか、それともスキャルピングのような短期取引をおこなうのかといったトレーダーのスタイルによって異なります。トレンド確認に使用する時間枠の選択は非常に重要な役割を果たします。以下の記事では、ワンクリックや定期的な更新によって、複数の時間足にわたる全体的なトレンドを自動で分析できる便利なシステムを紹介しています。ぜひご覧ください。
取引システムの構築(第5回):構造化された取引決済による利益管理
利益目標まであとわずかというところで価格が反転し、ストップロスにかかってしまう。トレーリングストップによって建値で決済された直後に、市場が元の方向へ大きく動き、当初の目標を超えていく。多くのトレーダーにとって、これはおなじみの悩みでしょう。本記事では、異なるリスクリワードレシオ(RRR)で複数のエントリーを配置する手法に焦点を当て、利益を体系的に確保しながら、全体のリスク曝露を抑えるアプローチを解説します。
リプレイシステムの開発 - 市場シミュレーション(第22回):FOREX (III)
このトピックに関する記事は今回で3回目になりますが、株式市場とFOREX市場の違いをまだ理解していない方のために説明しなければなりません。大きな違いは、FOREXでは、取引の過程で実際に発生したいくつかのポイントに関する情報がないというか、与えられないということです。
彗尾アルゴリズム(CTA)
この記事では、ユニークな宇宙物体である彗星と、太陽に接近する際に形成されるその印象的な尾にインスパイアされた「彗尾最適化アルゴリズム(CTA: Comet Tail Algorithm)」について考察します。このアルゴリズムは、彗星とその尾の運動の概念に基づき、最適化問題の最適解を見つけることを目的としています。
プライスアクション分析ツールキットの開発(第4回):Analytics Forecaster EA
チャート上に表示された分析済みのメトリックを見るだけにとどまらず、Telegramとの統合によってブロードキャストを拡張するという、より広い視点へと移行しています。この機能強化により、Telegramアプリを通じて、重要な結果がモバイルデバイスに直接配信されるようになります。この記事では、この新たな取り組みを一緒に探っていきましょう。
MQL5取引ツールキット(第5回):ポジション関数による履歴管理EX5ライブラリの拡張
エクスポート可能なEX5関数を作成して、過去のポジションデータを効率的にクエリおよび保存する方法を解説します。このステップバイステップのガイドでは、直近にクローズされたポジションの主要なプロパティを取得するモジュールを開発し、HistoryManagement EX5ライブラリを拡張していきます。対象となるプロパティには、純利益、取引時間、ピップ単位でのストップロスやテイクプロフィット、利益値、その他多くの重要な情報が含まれます。
知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択
損失関数は、機械学習アルゴリズムの重要な指標です。これは、与えられたパラメータセットが目標に対してどれだけうまく機能しているかを定量的に評価し、学習プロセスにフィードバックを提供する役割を果たします。本記事では、MQL5のカスタムウィザードクラスを使って、損失関数のさまざまな形式を探っていきます。
MQL5で取引管理者パネルを作成する(第9回):コード編成(I)
このディスカッションでは、大規模なコードベースを扱う際に直面する課題について掘り下げます。MQL5におけるコード構成のベストプラクティスを紹介し、取引管理パネルのソースコードの可読性と拡張性を向上させるための実践的なアプローチを実装します。また、他の開発者がアルゴリズム開発で活用できる再利用可能なコードコンポーネントの開発も目指しています。ぜひ最後までお読みいただき、ご意見をお寄せください。
ALGLIBライブラリの最適化手法(第1回):
この記事では、MQL5におけるALGLIBライブラリの最適化手法について紹介します。記事には、最適化問題を解決するためにALGLIBを使用するシンプルで分かりやすい例が含まれており、これらの手法をできるだけ身近に感じられるように構成されています。BLEIC、L-BFGS、NSといったアルゴリズムのつながりを詳しく見ていき、それらを使って簡単なテスト問題を解いてみます。
MQL5とデータ処理パッケージの統合(第5回):適応学習と柔軟性
今回は、過去のXAU/USDデータを用いて柔軟で適応的な取引モデルを構築し、ONNX形式でのエクスポートや実際の取引システムへの統合に備えることに焦点を当てます。
亀甲進化アルゴリズム(TSEA)
これは、亀の甲羅の進化にインスパイアされたユニークな最適化アルゴリズムです。TSEAアルゴリズムは、問題に対する最適解を表す構造化された皮膚領域が徐々に形成される様子をエミュレートします。最良の解は「硬く」なり、外側に近い位置に配置され、成功しなかった解は「柔らかい」ままで内側に留まります。このアルゴリズムは、質と距離に基づく解のクラスタリングを利用し、成功率の低い選択肢を保持しながら、柔軟性と適応性を提供します。
リプレイシステムの開発(第45回):Chart Tradeプロジェクト(IV)
この記事の主な目的は、C_ChartFloatingRADクラスの紹介と説明です。Chart Trade指標は、非常に興味深い方法で機能しています。チャート上のオブジェクトの数はまだ少ないものの、期待通りの機能を実現しています。指標の値は編集可能ですが、その実現方法については疑問が残るかもしれません。この記事を読めば、これらの疑問が解消されるでしょう。
MQL5における段階的特徴量選択
この記事では、MQL5で実装された段階的特徴量選択の修正バージョンを紹介します。このアプローチは、Timothy Masters著の「Modern Data Mining Algorithms in C++ and CUDA C」で概説されている手法に基づいています。
汎用MLP近似器に基づくエキスパートアドバイザー
この記事では、機械学習の深い知識がなくても利用できる、取引EAでのニューラルネットワークの簡単でアクセスしやすい使用方法を紹介しています。この方法では、目的関数の正規化を省略できるほか、「重みの爆発」や「収束停止」といった問題を解消し、直感的な学習と結果の視覚的な管理を可能にしています。
金融時系列予測のための生物学的ニューロン
時系列予測のために生物学的に正しいニューロンシステムを構築します。ニューラルネットワークのアーキテクチャにプラズマ的な環境を導入することで、一種の「集合知」が生まれます。そこでは、各ニューロンが直接的な結合だけでなく、長距離の電磁相互作用を通じてもシステム全体の動作に影響を与えます。このようなニューラル脳モデリングシステムが市場においてどのような性能を発揮するのかを見ていきます。
Developing a Replay System (Part 36): Making Adjustments (II)
One of the things that can make our lives as programmers difficult is assumptions. In this article, I will show you how dangerous it is to make assumptions: both in MQL5 programming, where you assume that the type will have a certain value, and in MetaTrader 5, where you assume that different servers work the same.
リプレイシステムの開発(第39回):道を切り開く(III)
開発の第2段階に進む前に、いくつかのアイデアを修正する必要があります。MQL5に必要なことをさせる方法をご存知ですか。ドキュメントに書かれている以上のことをしようとしたことはありますか。そうでないなら、準備をしましょう。ここでは、ほとんどの人が普段やらないことをやるからです。
プライスアクション分析ツールキットの開発(第35回):予測モデルの学習とデプロイ
履歴データは決して「ゴミ」ではありません。それは、堅牢な市場分析の基盤です。本記事では、履歴データの収集から、それを用いた予測モデルの学習、そして学習済みモデルを用いたリアルタイムの価格予測のデプロイまでを、ステップごとに解説します。ぜひ最後までお読みください。
MQL5とデータ処理パッケージの統合(第3回):データ可視化の強化
この記事では、基本的なチャートの枠を超え、インタラクティブ性、データの層化、ダイナミックな要素といった機能を組み込むことで、トレーダーがトレンド、パターン、相関関係をより効果的に探求できるようにする、データ可視化の高度化について解説します。
知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習
SARSAは、State-Action-Reward-State-Actionの略で、強化学習を実装する際に使用できる別のアルゴリズムです。Q学習とDQNで見たように、ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、これを単なる訓練メカニズムとしてではなく、独立したモデルとしてどのように実装できるかを検討します。
アンサンブル学習におけるゲーティングメカニズム
この記事では、アンサンブルモデルの検討をさらに進め、「ゲート」という概念に注目し、モデル出力を組み合わせることで予測精度や汎化性能の向上にどのように役立つかを解説します。
リプレイシステムの開発(第43回):Chart Traderプロジェクト(II)
プログラミングを学びたいと夢見る人のほとんどは、実際に自分が何をしているのかわかっていません。彼らの活動は、ある方法で物事を創造しようとすることから成っています。しかし、プログラミングとは、適切な解決策を仕立てることではありません。このようなやり方は、解決策よりも多くの問題を引き起こす可能性があります。ここでは、より高度で、それゆえに異なることをします。
知っておくべきMQL5ウィザードのテクニック(第51回):SACによる強化学習
Soft Actor Criticは、Actorネットワーク1つとCriticネットワーク2つ、合計3つのニューラルネットワークを用いる強化学習アルゴリズムです。これらのモデルは、CriticがActorネットワークの予測精度を高めるように設計された、いわばマスタースレーブの関係で連携します。本連載では、ONNXの導入も兼ねて、こうした概念を、ウィザード形式で構築されたエキスパートアドバイザー(EA)内のカスタムシグナルとしてどのように実装・活用できるかを探っていきます。
最適化アルゴリズムの効率における乱数生成器の品質の役割
この記事では、メルセンヌ・ツイスタ乱数生成器を取り上げ、MQL5の標準的な乱数生成器と比較します。また、乱数生成器の品質が最適化アルゴリズムの結果に与える影響についても調べます。
プライスアクション分析ツールキットの開発(第20回):External Flow (IV) — Correlation Pathfinder
Correlation Pathfinderは、「プライスアクション分析ツールキット開発」連載の一環として、通貨ペアの動的な関係を理解するための新しいアプローチを提供します。このツールはデータの収集と分析を自動化し、EUR/USDやGBP/USDなどのペアがどのように連動して動いているかを可視化します。リスク管理を強化し、より効果的にチャンスを捉えるための実用的かつリアルタイムな情報で、取引戦略のレベルを引き上げましょう。
プライスアクション分析ツールキットの開発(第44回):MQL5でVWMAクロスオーバーシグナルEAを構築する
本記事では、MetaTrader 5向けに開発されたVWMA(出来高加重移動平均)クロスオーバーシグナルツールを紹介します。このツールは、価格動向と出来高を組み合わせることで、強気および弱気の反転ポイントを特定することを目的としています。このエキスパートアドバイザー(EA)は、チャート上に明確な買いと売りシグナルを直接表示し、豊富な情報を持つパネルを備えるとともに、ユーザーによる詳細なカスタマイズが可能で、実践的な取引戦略の強力な補助となります。
3D反転パターンに基づくアルゴリズム取引
3Dバーによる自動売買の新しい世界を発見します。多次元の価格バー上で自動売買ロボットはどのように見えるのでしょうか。3Dバーの「黄色のクラスタ」はトレンドの反転を予測できるのでしょうか。多次元取引はどのように見えるのでしょうか。
データサイエンスとML(第35回):MQL5でのNumPy活用術 - 少ないコードで複雑なアルゴリズムを構築する技法
NumPyライブラリは、Pythonプログラミング言語においてほぼすべての機械学習アルゴリズムの中核を支えています。本記事では、高度なモデルやアルゴリズムの構築を支援するために、複雑なコードをまとめたモジュールを実装していきます。
リプレイシステムの開発(第54回):最初のモジュールの誕生
この記事では、リプレイ/シミュレーターシステムで使用するための、他の目的にも汎用的に使用できる、実際に機能するモジュールの最初のものを組み立てる方法について説明します。マウスモジュールです。
リプレイシステムの開発(第67回):コントロールインジケーターの改良
この記事では、コードを少し手直しすることで、どのような改善が得られるかを見ていきます。今回の改良は、コードの簡素化を図り、MQL5ライブラリの呼び出しをより活用し、そして何よりも、将来的に開発する可能性のある他のプロジェクトでも、より安定して安全かつ使いやすくなることを目的としています。