MQL5における統計とデータの分析に関する記事

icon

数学的なモデルと確率の法則は多くのトレーダーにとって興味深いでしょう。数学はテクニカル指標の基本であり、トレーディングの結果を分析しストラテジーを開発するためには統計が必要です。

あいまいなロジック、デジタルフィルタ、マーケットプロファイル、コホーネンマップ、ニューラルガス、その他のトレーディングに使用できる多くのツールについてご覧ください。

新しい記事を追加
最新 | ベスト
preview
リプレイシステムの開発 - 市場シミュレーション(第16回):新しいクラスシステム

リプレイシステムの開発 - 市場シミュレーション(第16回):新しいクラスシステム

もっと仕事を整理する必要があります。コードはどんどん大きくなっており、今やらなければ不可能になります。分割して征服しましょう。MQL5では、このタスクを実行するのに役立つクラスを使用することができますが、そのためにはクラスに関する知識が必要です。おそらく初心者を最も混乱させるのは継承でしょう。この記事では、これらのメカニズムを実用的かつシンプルな方法で使用する方法を見ていきます。
preview
母集団最適化アルゴリズム:SSG(Saplings Sowing and Growing up、苗木の播種と育成)

母集団最適化アルゴリズム:SSG(Saplings Sowing and Growing up、苗木の播種と育成)

SSG(Saplings Sowing and Growing up、苗木の播種と育成)アルゴリズムは、様々な条件下で優れた生存能力を発揮する、地球上で最も回復力のある生物の1つからインスピレーションを得ています。
preview
知っておくべきMQL5ウィザードのテクニック(第08回):パーセプトロン

知っておくべきMQL5ウィザードのテクニック(第08回):パーセプトロン

パー​​セプトロン(単一隠れ層ネットワーク)は、基本的な自動取引に精通していて、ニューラルネットワークを試してみようとしている人にとって、優れた入門編となります。エキスパートアドバイザー(EA)用のMQL5ウィザードクラスの一部であるシグナルクラスアセンブリでこれをどのように実現できるかを段階的に見ていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第26回):移動平均とハースト指数

知っておくべきMQL5ウィザードのテクニック(第26回):移動平均とハースト指数

ハースト指数は、時系列データが長期間にわたってどれだけ自己相関しているかを示す指標です。ハースト指数は、時系列データの長期的な特性を捉えることがわかっているため、経済や金融に限らず、幅広い時系列分析において重要な役割を果たします。本稿では、ハースト指数を移動平均線と組み合わせることで、トレーダーにとって有用なシグナルをどのように得られるかを検討し、その潜在的なメリットに焦点を当てます。
preview
リプレイシステムの開発(第53回):物事は複雑になる(V)

リプレイシステムの開発(第53回):物事は複雑になる(V)

今回は、あまり理解されていない重要なトピックを取り上げます。「カスタムイベント」です。これは危険です。これらの要素の長所と短所を解説します。このトピックは、MQL5やその他の言語でプロのプログラマーになりたい人にとって重要な鍵となります。ここではMQL5とMetaTrader 5に焦点を当てます。
preview
パターン検索への総当たり攻撃アプローチ(第V部):新鮮なアングル

パターン検索への総当たり攻撃アプローチ(第V部):新鮮なアングル

この記事では、私が長い時間をかけてたどり着いた、アルゴリズム取引に対するまったく異なるアプローチを紹介します。もちろん、これはすべて私の総当たり攻撃プログラムに関係しています。これには、複数の問題を同時に解決できるように多くの変更が加えられています。とはいえ、この記事はより一般的で可能な限りシンプルなものであるため、総当たり攻撃について何も知らない読者にも適しています。
preview
季節性を利用した外国為替スプレッド取引

季節性を利用した外国為替スプレッド取引

この記事では、外国為替取引におけるスプレッド取引時に季節性要因を利用したレポートデータの生成および提供の可能性について検討します。
preview
PythonとMQL5における局所的特徴量選択の適用

PythonとMQL5における局所的特徴量選択の適用

この記事では、Narges Armanfardらの論文「Local Feature Selection for Data Classification」で提案された特徴量選択アルゴリズムを紹介します。このアルゴリズムはPythonで実装されており、MetaTrader 5アプリケーションに統合可能なバイナリ分類モデルの構築に使用されます。
preview
プライスアクション分析ツールキットの開発(第11回):Heikin Ashi Signal EA

プライスアクション分析ツールキットの開発(第11回):Heikin Ashi Signal EA

MQL5は、ユーザーの好みに合わせてカスタマイズ可能な自動売買システムを開発するための無限の可能性を提供します。複雑な数値計算も実行できることをご存知でしょうか。この記事では、自動売買戦略として日本の平均足手法を紹介します。
preview
リプレイシステムの開発—市場シミュレーション(第3回):設定の調整(I)

リプレイシステムの開発—市場シミュレーション(第3回):設定の調整(I)

まずは現状を明らかにすることから始めましょう。今やらなければ、すぐに問題になります。
preview
Pythonでの見せかけの回帰

Pythonでの見せかけの回帰

見せかけの回帰は、2つの時系列がまったくの偶然で高い相関を示し、回帰分析で誤解を招く結果をもたらす場合に発生します。このような場合、変数が関連しているように見えても、その相関関係は偶然であり、モデルの信頼性は低くなります。
preview
MQL5の圏論(第19回):自然性の正方形の帰納法

MQL5の圏論(第19回):自然性の正方形の帰納法

自然性の正方形の帰納法を考えることで、自然変換について考察を続けます。MQL5ウィザードで組み立てられたエキスパートアドバイザー(EA)の多通貨の実装には若干の制約があるため、スクリプトでデータ分類能力を紹介しています。主な用途は、価格変動の分類とその予測です。
preview
MQL5の圏論(第21回):LDAによる自然変換

MQL5の圏論(第21回):LDAによる自然変換

連載21回目となるこの記事では、自然変換と、線形判別分析を使ったその実装方法について引き続き見ていきます。前回同様、シグナルクラス形式でその応用例を紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第19回):ベイズ推定

知っておくべきMQL5ウィザードのテクニック(第19回):ベイズ推定

ベイズ推定とは、新しい情報が入手可能になったときに確率仮説を更新するためにベイズの定理を採用することです。これは直感的に時系列分析への適応につながるので、シグナルだけでなく、資金管理やトレーリングストップのためのカスタムクラスを構築する際に、これをどのように利用できるか見てみましょう。
preview
MQL5における修正グリッドヘッジEA(第3部):シンプルヘッジ戦略の最適化(I)

MQL5における修正グリッドヘッジEA(第3部):シンプルヘッジ戦略の最適化(I)

この第3部では、以前に開発したシンプルヘッジとシンプルグリッドエキスパートアドバイザー(EA)を再考します。最適な戦略の使用を目指し、数学的分析と総当り攻撃アプローチを通じてシンプルヘッジEAを改良することに焦点を移します。戦略の数学的最適化について深く掘り下げ、後の回でコーディングに基づく最適化を探求するための舞台を整えます。
preview
MQL5における数値予測を強化するアンサンブル法

MQL5における数値予測を強化するアンサンブル法

この記事では、MQL5における複数のアンサンブル学習手法の実装を紹介し、それらの手法がさまざまな状況下でどの程度有効かを検証します。
preview
知っておくべきMQL5ウィザードのテクニック(第13回):ExpertSignalクラスのためのDBSCAN

知っておくべきMQL5ウィザードのテクニック(第13回):ExpertSignalクラスのためのDBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)は、データをグループ化する教師なし形式であり、入力パラメータをほとんど必要としません。入力パラメータは2つだけであり、K平均法などの他のアプローチと比較すると利点が得られます。ウィザードで組み立てたEAを使用してテストし、最終的に取引するために、これがどのように建設的であり得るかを掘り下げます。
preview
多通貨エキスパートアドバイザーの開発(第8回):新しいバーの負荷テストと処理

多通貨エキスパートアドバイザーの開発(第8回):新しいバーの負荷テストと処理

進歩に伴い、1つのEAでより多くの取引戦略インスタンスを同時に実行するようになりました。リソースの限界に達する前に、どのくらいのインスタンスが利用可能かを検討することが重要です。
preview
母集団最適化アルゴリズム:群鳥アルゴリズム(BSA)

母集団最適化アルゴリズム:群鳥アルゴリズム(BSA)

本稿では、自然界における鳥の群れの集団的な相互作用に着想を得た、鳥の群れに基づくアルゴリズム(BSA)を探求します。飛行、警戒、採餌行動の切り替えなど、BSAの個体にはさまざまな探索戦略があるため、このアルゴリズムは多面的なものとなっています。鳥の群れ、コミュニケーション、適応性、先導と追随の原理を利用し、効率的に最適解を見つけます。
preview
母集団最適化アルゴリズム:社会集団の進化(ESG)

母集団最適化アルゴリズム:社会集団の進化(ESG)

多母集団アルゴリズムの構成原理を考えます。この種のアルゴリズムの一例として、新しいカスタムアルゴリズムであるESG (Evolution of Social Groups)を見てみましょう。このアルゴリズムの基本概念、母集団相互作用メカニズム、利点を分析し、最適化問題におけるパフォーマンスを検証します。
preview
リプレイシステムの開発 - 市場シミュレーション(第9回):カスタムイベント

リプレイシステムの開発 - 市場シミュレーション(第9回):カスタムイベント

ここでは、カスタムイベントがどのようにトリガーされ、指標でどのようにリプレイ/シミュレーションサービスの状態がレポートされるかを見ていきます。
preview
プライスアクション分析ツールキットの開発(第3回):Analytics Master EA

プライスアクション分析ツールキットの開発(第3回):Analytics Master EA

シンプルな取引スクリプトから完全に機能するエキスパートアドバイザー(EA)に移行することで、取引エクスペリエンスが大幅に向上します。チャートを自動で監視し、バックグラウンドで重要な計算を実行し、さらに2時間ごとに定期的な更新を提供するシステムを想像してみてください。このEAは、的確な取引判断を下すために不可欠な主要指標を分析し、常に最新の情報を取得して戦略を効果的に調整できるようにします。
preview
リプレイシステムの開発(第68回):正しい時間を知る(I)

リプレイシステムの開発(第68回):正しい時間を知る(I)

今日は、流動性が低い時間帯に、マウスポインタを使ってバーの残り時間を確認できるようにする作業を引き続き進めていきます。一見すると簡単そうに思えますが、実際にはこの作業には多くの困難が伴います。いくつかの障害を乗り越える必要があるため、このサブシリーズの最初のパートをしっかりと理解しておくことが、今後の内容を理解する上で非常に重要です。
preview
プライスアクション分析ツールキットの開発(第12回):External Flow (III)トレンドマップ

プライスアクション分析ツールキットの開発(第12回):External Flow (III)トレンドマップ

市場の流れは、ブル(買い手)とベア(売り手)の力関係によって決まります。市場が反応する特定の水準には、そうした力が作用しています。中でも、フィボナッチとVWAPの水準は、市場の動きに強い影響を与える傾向があります。この記事では、VWAPとフィボナッチ水準に基づいたシグナル生成の戦略を一緒に探っていきましょう。
preview
デイトレードLarry Connors RSI2平均回帰戦略

デイトレードLarry Connors RSI2平均回帰戦略

Larry Connorsは著名なトレーダー兼著者であり、特に2期間RSI (RSI2)などのクオンツトレーディングや戦略で知られています。RSI2は短期的な買われすぎ・売られすぎの市場状況を識別するのに役立ちます。本記事では、まず私たちの研究の動機を説明し、その後Connorsの代表的な3つの戦略をMQL5で再現し、S&P 500指数CFDのデイトレードに適用していきます。
preview
リプレイシステムの開発 - 市場シミュレーション(第15回):シミュレーターの誕生(V) - ランダムウォーク

リプレイシステムの開発 - 市場シミュレーション(第15回):シミュレーターの誕生(V) - ランダムウォーク

この記事では、私たちのシステムのシミュレーターの開発を完成させます。ここでの主な目的は、前回の記事で説明したアルゴリズムを設定することです。このアルゴリズムは、ランダムウォークの動きを作り出すことを目的としています。したがって、今日の資料を理解するためには、過去の記事の内容を理解する必要があります。シミュレーターの開発をフォローしていない方は、この一連の流れを最初から読まれることをお勧めします。さもないと、ここで説明されることがわからなくなるかもしれません。
preview
知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

近接方策最適化は、強化学習におけるアルゴリズムの一つで、モデルの安定性を確保するために、しばしばネットワーク形式で非常に小さな増分で方策を更新します。前回の記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)において、これがどのように役立つかを探ります。
preview
コードロックアルゴリズム(CLA)

コードロックアルゴリズム(CLA)

この記事では、コードロックを単なるセキュリティメカニズムとしてではなく、複雑な最適化問題を解くためのツールとして再考し、新たな視点から捉えます。セキュリティ装置にとどまらず、最適化への革新的アプローチのインスピレーション源となるコードロックの世界をご紹介します。各ロックが特定の問題の解を表す「ロック」の母集団を作り、機械学習や取引システム開発など様々な分野でこれらのロックを「ピッキング」し、最適解を見つけるアルゴリズムを構築します。
preview
知っておくべきMQL5ウィザードのテクニック(第32回):正則化

知っておくべきMQL5ウィザードのテクニック(第32回):正則化

正則化とは、ニューラルネットワークのさまざまな層全体に適用される離散的な重み付けに比例して、損失関数にペナルティを与える形式です。様々な正則化形式について、ウィザードで組み立てたEAを使ったテスト実行で、この正則化が持つ重要性を見てみます。
preview
未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析

未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析

この記事では、テクニカル分析の原理とLSTMニューラルネットワークの構造を統合することで、取引量分析に基づく価格予測の改善可能性を探ります。特に、異常な取引量の検出と解釈、クラスタリングの活用、および機械学習の文脈における取引量に基づく特徴量の作成と定義に注目しています。
preview
リプレイシステムの開発(第27回):エキスパートアドバイザープロジェクト-C_Mouseクラス(I)

リプレイシステムの開発(第27回):エキスパートアドバイザープロジェクト-C_Mouseクラス(I)

この記事では、C_Mouseクラスを実装します。このクラスは、最高水準でプログラミングする能力を提供します。しかし、高水準や低水準のプログラミング言語について語ることは、コードに卑猥な言葉や専門用語を含めることではありません。逆です。高水準プログラミング、低水準プログラミングというのは、他のプログラマーが理解しやすいか、しにくいかという意味です。
preview
時間、価格、ボリュームに基づいた3Dバーの作成

時間、価格、ボリュームに基づいた3Dバーの作成

この記事では、多変量3D価格チャートとその作成方法について詳しく説明します。また、3Dバーが価格反転をどのように予測するか、PythonとMetaTrader 5を使ってリアルタイムでこれらのボリュームバーをプロットする方法についても考察します。
preview
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第2回):ディープニューラルネットワークのチューニング

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第2回):ディープニューラルネットワークのチューニング

機械学習モデルには、様々な調整可能なパラメータがあります。この連載では、SciPyライブラリを使用して、特定の市場に合うようにAIモデルをカスタマイズする方法を探ります。
preview
MQL5の圏論(第23回):二重指数移動平均の別の見方

MQL5の圏論(第23回):二重指数移動平均の別の見方

この記事では、前回に引き続き、日常的な取引指標を「新しい」視点で見ていくことをテーマとします。今回は、自然変換の水平合成を取り扱いますが、これに最適な指標は、今回取り上げた内容を拡大したもので、二重指数移動平均(DEMA)です。
preview
知っておくべきMQL5ウィザードのテクニック(第46回):一目均衡表

知っておくべきMQL5ウィザードのテクニック(第46回):一目均衡表

一目均衡表はトレンド識別システムとして機能する有名な日本の指標です。以前の同様の記事と同様に、パターンごとにこれを調べ、MQL5ウィザードライブラリクラスとアセンブリの助けを借りて、その戦略とテストレポートも評価します。
preview
MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発

MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発

詳細なステップバイステップのアプローチで拡張履歴管理EX5ライブラリを作成し、MQL5を使用してクローズされたポジション、注文、取引履歴を取得、処理、分類、並べ替え、分析、管理する方法を学びます。
preview
リプレイシステムの開発(第26回):エキスパートアドバイザープロジェクト-C_Terminalクラス

リプレイシステムの開発(第26回):エキスパートアドバイザープロジェクト-C_Terminalクラス

これで、リプレイ/シミュレーションシステムで使用するEAの作成を開始できます。ただし、行き当たりばったりの解決策ではなく、何か改善策が必要です。にもかかわらず、最初の複雑さに怯んではなりません。どこかで始めることが重要で、そうでなければ、その課題を克服しようともせずに、その難しさを反芻してしまうことになります。それこそがプログラミングの醍醐味であり、学習、テスト、徹底的な研究を通じて障害を克服することです。
preview
MetaTrader 5を使用してPythonでカスタム通貨ペアパターンを見つける

MetaTrader 5を使用してPythonでカスタム通貨ペアパターンを見つける

外国為替市場には繰り返しパターンや規則性が存在するのでしょうか。私は、PythonとMetaTrader 5を使って独自のパターン分析システムを構築することに決めました。これは、外国為替市場を攻略するための、数学とプログラミングの一種の融合です。
preview
MQL5取引ツールキット(第8回):コードベースにHistory Manager EX5ライブラリを実装して使用する方法

MQL5取引ツールキット(第8回):コードベースにHistory Manager EX5ライブラリを実装して使用する方法

MetaTrader 5口座の取引履歴を処理するために、MQL5ソースコード内で「History Manager EX5」ライブラリを簡単にインポートして活用する方法を、本連載の最終回となるこの記事で解説します。MQL5ではシンプルな1行の関数呼び出しで、取引データの管理や分析を効率的におこなうことが可能です。さらに、取引履歴の分析スクリプトを複数作成する方法や、実用的なユースケースとして、価格ベースのエキスパートアドバイザー(EA)の開発方法についても学んでいきます。このEAは、価格データとHistory Manager EX5ライブラリを活用し、過去のクローズ済み取引に基づいて取引判断をおこない、取引量の調整やリカバリーストラテジーの実装をおこないます。
preview
ボラティリティを予測するための計量経済学ツール:GARCHモデル

ボラティリティを予測するための計量経済学ツール:GARCHモデル

この記事では、条件付き異分散性(GARCH)という非線形モデルの特性について説明します。また、このモデルを基に、一歩先のボラティリティを予測するためのiGARCHインジケーターを構築しました。モデルのパラメータ推定には、ALGLIB数値解析ライブラリを使用しています。