
リプレイシステムの開発(第57回):テストサービスについて
注意点が1つあります。この記事にはサービスコードは含まれておらず、次の記事でのみ提供されます。ただし、実際の開発の出発点として同じコードを使用するため、この記事ではその説明をおこないます。ですので、注意深く、そして忍耐強く読んでください。毎日、すべてがさらに面白くなっていきますので、次の記事を楽しみにお待ちください。

プライスアクション分析ツールキットの開発(第12回):External Flow (III)トレンドマップ
市場の流れは、ブル(買い手)とベア(売り手)の力関係によって決まります。市場が反応する特定の水準には、そうした力が作用しています。中でも、フィボナッチとVWAPの水準は、市場の動きに強い影響を与える傾向があります。この記事では、VWAPとフィボナッチ水準に基づいたシグナル生成の戦略を一緒に探っていきましょう。

MetaTrader 5で隠れマルコフモデルを統合する
この記事では、Pythonを使用して学習した隠れマルコフモデルをMetaTrader 5アプリケーションに統合する方法を示します。隠れマルコフモデルは、時系列データをモデル化するために使用される強力な統計的ツールであり、モデル化されるシステムは観測不可能な(隠れた)状態によって特徴付けられます。HMMの基本的な前提は、ある時刻にある状態にある確率は、その前のタイムスロットにおけるプロセスの状態に依存するということです。

リプレイシステムの開発(第37回):道を切り開く(I)
今回は、もっと前にやりたかったことをようやく始めます。確固たる地盤がないため、この部分を公に発表する自信がありませんでした。今、私にはその根拠があります。この記事の内容を理解することにできるだけ集中することをお勧めします。単に読むだけではなくて、という意味です。ここで強調しておきたいのは、この記事を理解できなければ、それに続く記事の内容を理解することはできないということです。

知っておくべきMQL5ウィザードのテクニック(第24回):移動平均
移動平均は、ほとんどのトレーダーが使用し、理解している非常に一般的な指標です。この記事では、MQL5ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、あまり一般的ではないかもしれない使用例を探っていきます。

リプレイシステムの開発(第41回):第2段階(II)の開始
もし、この時点まですべてが正しく思えたとしたら、それはアプリケーションの開発を始めるときに、長期的なことをあまり考えていないということです。時間が経つにつれて、新しいアプリケーションをプログラムする必要はなくなり、それらを連携させるだけで済むようになります。それでは、マウス指標を組み立てる方法を説明しましょう。

母集団最適化アルゴリズム:2進数遺伝的アルゴリズム(BGA)(第1回)
この記事では、2進数遺伝的アルゴリズムやその他の集団アルゴリズムで使用されるさまざまな手法を探ります。選択、交叉、突然変異といったアルゴリズムの主な構成要素と、それらが最適化に与える影響について見ていきます。さらに、データの表示手法と、それが最適化結果に与える影響についても研究します。

知っておくべきMQL5ウィザードのテクニック(第21回):経済指標カレンダーデータによるテスト
経済指標カレンダーのデータは、デフォルトではストラテジーテスターのエキスパートアドバイザー(EA)でテストすることはできません。この制限を回避するために、データベースがどのように役立つかを考察します。そこでこの記事では、SQLiteデータベースを使用して経済指標カレンダーのニュースをアーカイブし、ウィザードで組み立てられたEAがこれを使用して売買シグナルを生成できるようにする方法を探ります。

主成分を用いた特徴量選択と次元削減
この記事では、Luca Puggini氏とSean McLoone氏による論文「Forward Selection Component Analysis: Algorithms and Applications」に基づき、修正版のForward Selection Component Analysis (FSCA)アルゴリズムの実装について詳しく解説します。

知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習
近接方策最適化は、強化学習におけるアルゴリズムの一つで、モデルの安定性を確保するために、しばしばネットワーク形式で非常に小さな増分で方策を更新します。前回の記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)において、これがどのように役立つかを探ります。

プライスアクション分析ツールキットの開発(第5回):Volatility Navigator EA
市場の方向性を判断するのは簡単ですが、いつエントリーするかを知るのは難しい場合があります。連載「プライスアクション分析ツールキットの開発」の一環として、エントリーポイント、テイクプロフィットレベル、ストップロスの配置を提供する別のツールを紹介できることを嬉しく思います。これを実現するために、MQL5プログラミング言語を利用しました。この記事では、各ステップについて詳しく見ていきましょう。

知っておくべきMQL5ウィザードのテクニック(第16回):固有ベクトルによる主成分分析
データ分析における次元削減技術である主成分分析について、固有値とベクトルを用いてどのように実装できるかを考察します。いつものように、MQL5ウィザードで使用可能なExpertSignalクラスのプロトタイプの開発を目指します。

MQL5取引ツールキット(第6回):直近で約定された予約注文に関する関数で履歴管理EX5ライブラリを拡張
EX5モジュールで、直近で約定された予約注文のデータをシームレスに取得・格納するエクスポート可能な関数を作成する方法を学びます。このステップバイステップの包括的なガイドでは、直近で約定された予約注文の重要なプロパティ(注文タイプ、発注時間、約定時間、約定タイプなど)を取得するための専用かつ機能別の関数群を開発することで、履歴管理EX5ライブラリをさらに強化していきます。これらのプロパティは、予約注文の取引履歴を効果的に管理・分析するうえで重要な情報です。

ニュース取引が簡単に(第2回):リスク管理
この記事では、以前のコードと新しいコードに継承を導入します。効率性を高めるために新しいデータベース設計が実装されます。さらに、取引量計算に取り組むためのリスク管理クラスも作成されます。

プライスアクション分析ツールキットの開発(第9回):External Flow
本稿では、高度な分析手法として外部ライブラリを活用する、新たなアプローチを紹介します。pandasのようなライブラリは、複雑なデータを処理・解釈するための強力なツールを提供し、トレーダーが市場の動向についてより深い洞察を得られるようにします。このようなテクノロジーを統合することで、生のデータと実用的な戦略との間にあるギャップを埋めることができます。この革新的なアプローチの基盤を築き、テクノロジーと取引の専門知識を融合させる可能性を引き出すために、ぜひご一緒に取り組んでいきましょう。

リプレイシステムの開発 - 市場シミュレーション(第24回):FOREX (V)
本日は、Last価格に基づくシミュレーションを妨げていた制限を取り除き、このタイプのシミュレーションに特化した新しいエントリポイントをご紹介します。操作の仕組みはすべて、FOREX市場の原理に基づいています。この手順の主な違いは、BidシミュレーションとLastシミュレーションの分離です。ただし、時間をランダム化し、C_Replayクラスに適合するように調整するために使用された方法は、両方のシミュレーションで同じままであることに注意することが重要です。これは良いことです。特にティック間の処理時間に関して、一方のモードを変更すれば、もう一方のモードも自動的に改善されるからです。

時系列の非定常性の指標としての2標本コルモゴロフ–スミルノフ検定
この記事では、最も有名なノンパラメトリック同質性検定の1つである2標本のコルモゴロフ–スミルノフ検定について考察します。モデルデータと実際の相場の両方が分析されています。また、この記事では非定常性指標(iスミルノフ距離)の構築例も紹介しています。

リプレイシステムの開発(第29回):エキスパートアドバイザープロジェクト - C_Mouseクラス(III)
C_Mouseクラスを改良した後は、分析のためのまったく新しいフレームワークを作るためのクラスを作ることに集中しましょう。この新しいクラスを作るのに、継承やポリモーフィズムは使用しません。その代わりに、価格線に新しいオブジェクトを追加します。それがこの記事でやろうとしていることです。次回は、分析結果を変更する方法について見るつもりです。これらはすべて、C_Mouseクラスのコードを変更することなくおこなわれます。実際には、継承やポリモーフィズムを使用すれば、もっと簡単に実現できるでしょう。しかし、同じ結果を得る方法は他にもあります。

MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発
詳細なステップバイステップのアプローチで拡張履歴管理EX5ライブラリを作成し、MQL5を使用してクローズされたポジション、注文、取引履歴を取得、処理、分類、並べ替え、分析、管理する方法を学びます。

リプレイシステムの開発 - 市場シミュレーション(第21回):FOREX (II)
FOREX市場で作業するためのシステムを構築し続けます。この問題を解決するためには、まず、前のバーを読み込む前にティックの読み込みを宣言しなければなりません。これによって問題は解決されますが、同時にユーザーは構成ファイルの構造に従わざるを得なくなります。これは個人的にはあまり意味がありません。なぜなら、構成ファイルの内容を分析し、実行する役割を担うプログラムを設計することで、ユーザーが必要な要素を好きな順番で宣言できるようになるからです。

ボラティリティを予測するための計量経済学ツール:GARCHモデル
この記事では、条件付き異分散性(GARCH)という非線形モデルの特性について説明します。また、このモデルを基に、一歩先のボラティリティを予測するためのiGARCHインジケーターを構築しました。モデルのパラメータ推定には、ALGLIB数値解析ライブラリを使用しています。

リプレイシステムの開発(第63回):サービスの再生(IV)
この記事では、1分足のティックシミュレーションに関する問題を最終的に解決し、実際のティックと共存できるようにします。これにより、将来的なトラブルを回避することが可能になります。ここで提示される資料は教育目的のみに使用されます。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。

化学反応最適化(CRO)アルゴリズム(第1回):最適化におけるプロセス化学
この記事の最初の部分では、化学反応の世界に飛び込み、最適化への新しいアプローチを発見します。化学反応最適化(CRO)は、熱力学の法則から導き出された原理を使用して効率的な結果をもたらします。この革新的な方法の基礎となった分解、合成、その他の化学プロセスの秘密を明らかにします。

データサイエンスとML(第33回):MQL5におけるPandas DataFrame、ML使用のためのデータ収集が簡単に
機械学習モデルを使用する際は、学習・検証・テストに使用するデータの一貫性を確保することが重要です。この記事では、MQL5の外部(多くの学習がおこなわれる環境)とMQL5内部の両方で同じデータを利用できるようにするため、MQL5で独自のPandasライブラリを作成します。

行列分解:より実用的なモデリング
行と列ではなく列のみが指定されているため、行列モデリングが少し奇妙であることに気付かなかったかもしれません。行列分解を実行するコードを読むと、これは非常に奇妙に見えます。行と列がリストされていることを期待していた場合、因数分解しようとしたときに混乱する可能性があります。さらに、この行列モデリング方法は最適ではありません。これは、この方法で行列をモデル化すると、いくつかの制限に遭遇し、より適切な方法でモデル化がおこなわれていれば必要のない他の方法や関数を使用せざるを得なくなるためです。

プライスアクション分析ツールキットの開発(第2回): Analytical Commentスクリプト
プライスアクションを簡素化するというビジョンに沿って、市場分析を大幅に強化し、十分な情報に基づいた意思決定を支援する新しいツールを導入できることを嬉しく思います。このツールは、前日の価格、重要な支持と抵抗のレベル、取引量などの主要なテクニカル指標を表示し、チャート上に視覚的なヒントを自動的に生成します。

人工協調探索(ACS)アルゴリズム
人工協調探索(ACS)は、バイナリ行列と、相互主義的関係と協調に基づく複数の動的な個体群を用いて、最適解を迅速かつ正確に探索する革新的な手法です。捕食者と被食者に対するACS独自のアプローチにより、数値最適化問題で優れた結果を出すことができます。

リプレイシステムの開発(第30回):エキスパートアドバイザープロジェクト - C_Mouseクラス(IV)
今日は、プログラマーとしての職業生活のさまざまな段階で非常に役立つテクニックを学びます。多くの場合、制限されているのはプラットフォーム自体ではなく、制限について話す人の知識です。この記事では、常識と創造性があれば、クレイジーなプログラムなどを作成することなく、MetaTrader 5 プラットフォームをより面白くて多用途にし、シンプルでありながら安全で信頼性の高いコードを作成できることを説明します。創造力を駆使して、ソース コードを1行も削除したり追加したりすることなく、既存のコードを変更します。

リプレイシステムの開発(第46回):Chart Tradeプロジェクト(V)
アプリケーションを動作させるために必要なファイルを探すのに時間を浪費していませんか。すべてを実行ファイルに含めてみてはどうでしょうか。そうすれば、ファイルを探す必要がなくなります。多くの人がこのような配布・保管方法を採用していることは知っていますが、少なくとも、実行ファイルの配布や保管に関してはもっと適切な方法があります。ここで紹介する方法は、MQL5だけでなく、MetaTrader 5そのものを優れたアシスタントとして使うことができるので、非常に便利です。しかも、理解するのはそれほど難しくありません。

リプレイシステムの開発(第44回):Chart Tradeプロジェクト(III)
前回の記事では、OBJ_CHARTで使用するテンプレートデータの操作方法について解説しました。ただし、あの記事ではトピックの概要に焦点を当て、詳細な部分には触れていませんでした。これは、説明をよりシンプルにするために、非常に簡略化された手法を用いたからです。物事は一見シンプルに見えることが多いですが、実際にはそうではないケースもあり、全体を正確に理解するためには、まず最も基本的な部分をしっかり押さえる必要があります。

リプレイシステムの開発(第62回):サービスの再生(III)
この記事では、実際のデータを使用する際にアプリケーションのパフォーマンスに影響を及ぼす可能性のある「ティック過剰」の問題について取り上げます。このティック過剰は、1分足を適切なタイミングで構築するうえで支障となることがよくあります。

コードロックアルゴリズム(CLA)
この記事では、コードロックを単なるセキュリティメカニズムとしてではなく、複雑な最適化問題を解くためのツールとして再考し、新たな視点から捉えます。セキュリティ装置にとどまらず、最適化への革新的アプローチのインスピレーション源となるコードロックの世界をご紹介します。各ロックが特定の問題の解を表す「ロック」の母集団を作り、機械学習や取引システム開発など様々な分野でこれらのロックを「ピッキング」し、最適解を見つけるアルゴリズムを構築します。

データサイエンスとML(第42回):PythonでARIMAを用いた外国為替時系列予測、知っておくべきことすべて
ARIMAは自己回帰和分移動平均(Auto Regressive Integrated Moving Average)の略称で、強力な従来の時系列予測モデルです。このモデルは、時系列データ内の急上昇や変動を検出する機能により、次の値を正確に予測できます。この記事では、ARIMAが何であるか、どのように機能するか、市場での次の価格を高い精度で予測する際に何ができるかなどについて説明します。

従来の機械学習手法を使用した為替レートの予測:ロジットモデルとプロビットモデル
この記事では、為替レートの予測を目的とした取引用EAの構築を試みます。アルゴリズムは、ロジスティック回帰およびプロビット回帰といった古典的な分類モデルに基づいています。取引シグナルのフィルターとして、尤度比検定が用いられます。

外国為替におけるポートフォリオ最適化:VaRとマーコウィッツ理論の統合
FXにおけるポートフォリオ取引はどのように機能するのでしょうか。マーコウィッツのポートフォリオ理論による資産配分最適化と、VaRモデルによるリスク最適化はどのように統合できるのでしょうか。ポートフォリオ理論に基づいたコードを作成し、一方では低リスクを確保し、もう一方では受け入れ可能な長期的収益性を得ることを試みます。

リプレイシステムの開発 - 市場シミュレーション(第25回):次の段階への準備
この記事では、リプレイ/シミュレーションシステム開発の第1段階を完了しました。この成果により、システムが高度なレベルに達したことを確認し、新機能の導入への道を開くことができました。目標は、システムをさらに充実させ、市場分析の調査開発のための強力なツールに変えることです。

リプレイシステムの開発(第51回):物事は複雑になる(III)
この記事では、MQL5プログラミングの分野で最も難解な問題の1つである、チャートIDを正しく取得する方法と、オブジェクトがチャートにプロットされない場合がある理由について解説します。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。

未来のトレンドを見通す鍵としての取引量ニューラルネットワーク分析
この記事では、テクニカル分析の原理とLSTMニューラルネットワークの構造を統合することで、取引量分析に基づく価格予測の改善可能性を探ります。特に、異常な取引量の検出と解釈、クラスタリングの活用、および機械学習の文脈における取引量に基づく特徴量の作成と定義に注目しています。

MQL5とMetaTrader 5のインジケーターの再定義
MQL5でインジケーター情報を収集する革新的なアプローチにより、開発者がカスタム入力をインジケーターに渡して即座に計算をおこなえるようになり、より柔軟で効率的なデータ分析が可能になります。この方法は、従来の制約を超えてインジケーターで処理される情報に対する制御性を高めるため、アルゴリズム取引において特に有用です。