独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
データサイエンスと機械学習(第29回):AI訓練に最適なFXデータを選ぶための重要なヒント
この記事では、AIモデルのパフォーマンスを向上させるために、最も適切で高品質なFXデータを選択するための重要な側面について深く掘り下げます。
DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト
本稿では、2つのクラス(DOMスナップショットオブジェクトのクラスとDOMスナップショットシリーズオブジェクトのクラス)を作成し、DOMデータシリーズの作成をテストします。
ソーシャルトレーディング収益性の高いシグナルをさらに良くすることはできるでしょうか?
ほとんどのサブスクライバーは、バランス曲線の美しさとサブスクライバーの数で取引シグナルを選択しています。そのため、多くのプロバイダーは今日、シグナルの実際の質よりも、美しい統計により気を配り、多くの場合、トランザクションの量を多くして、人為的にバランス曲線を理想的な形にしています。この記事では、信頼性の基準と、プロバイダーがシグナルの品質を向上させる方法をご紹介します。特定のシグナルの履歴、またプロバイダーがより収益を上げ、リスクを低くするための方法の例をあげていきます。
データサイエンスと機械学習(第07回)::多項式回帰
線形回帰とは異なり、多項式回帰は、線形回帰モデルでは処理できないタスクをより適切に実行することを目的とした柔軟なモデルです。MQL5で多項式モデルを作成し、そこから何か良いものを作る方法を見つけてみましょう。
ニューラルネットワークが簡単に(第16部):クラスタリングの実用化
前回は、データのクラスタリングをおこなうためのクラスを作成しました。今回は、得られた結果を実際の取引に応用するためのバリエーションを紹介したいと思います。
MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築
この記事では、システム管理者を対象に、プラットフォーム内で他のトレーダーと直接コミュニケーションを図るための、MetaTrader 5用メッセージングインターフェイスの作成について説明します。ソーシャルプラットフォームとMQL5との最近の統合により、さまざまなチャンネルに素早くシグナルをブロードキャストことができるようになりました。YESかNOのどちらかをクリックするだけで、送られてきたシグナルを検証できることをご想像ください。詳しくは本稿をご覧ください。
市場シミュレーション(第1回):両建て注文(I)
本日から第2段階に入り、市場リプレイ/シミュレーションシステムについて見ていきます。まず、両建て注文の可能な解決策を示します。これは最終版ではありませんが、近い将来に解決しなければならない問題に対するひとつの可能なアプローチとなります。
DoEasyライブラリの時系列(第55部): 指標コレクションクラス
本稿では、指標オブジェクトクラスとそのコレクションの開発を続けます。指標オブジェクトごとに、その説明と正しいコレクションクラスを作成して、エラーなしのストレージを作成し、コレクションリストから指標オブジェクトを取得します。
EAを用いたリスクとキャピタルの管理
この記事では、バックテストレポートでは見えないこと、自動売買ソフトを使用する際の注意点、エキスパートアドバイザー(EA)を使用している場合の資金管理、自動売買をおこなっている場合に取引活動を続けるために大きな損失をカバーする方法について説明します。
確率最適化と最適制御の例
SMOC(Stochastic Model Optimal Controlの略と思われる)と名付けられたこのエキスパートアドバイザー(EA)は、MetaTrader 5用の高度なアルゴリズム取引システムのシンプルな例です。テクニカル指標、モデル予測制御、動的リスク管理を組み合わせて取引判断をおこないます。このEAには、適応パラメーター、ボラティリティに基づくポジションサイジング、トレンド分析が組み込まれており、さまざまな市場環境においてパフォーマンスを最適化します。
DoEasyライブラリの時系列(第48部): 単一サブウィンドウでの単一バッファ複数銘柄・複数期間指標
本稿では、単一の指標バッファを使用して、指標サブウィンドウを構築および操作するための複数銘柄・複数期間標準指標の作成例について説明します。プログラムのメインウィンドウで動作し、データを表示するための複数のバッファを持つ標準指標を操作するためのライブラリクラスを準備します。
データサイエンスと機械学習(第13回):主成分分析(PCA)で金融市場分析を改善する
主成分分析(Principal component analysis、PCA)で金融市場分析に革命を起こしましょう。この強力な手法がどのようにデータの隠れたパターンを解き放ち、潜在的な市場動向を明らかにし、投資戦略を最適化するかをご覧ください。この記事では、PCAが複雑な金融データを分析するための新しいレンズをどのように提供できるかを探り、従来のアプローチでは見逃されていた洞察を明らかにします。金融市場データにPCAを適用することで競争力を高め、時代を先取りする方法をご覧ください。
DoEasyライブラリの時系列(第59部): 単一ティックのデータを格納するオブジェクト
本稿からは、価格データを処理するライブラリ機能を作成します。今日、さらに別のティックで到着したすべての価格データを格納するオブジェクトクラスを作成します。
MQL5の圏論(第1回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQLコミュニティではまだ比較的知られていない分野です。この連載では、その概念のいくつかを紹介して考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
母集団最適化アルゴリズム:ハーモニーサーチ(HS)
今回は、完璧な音のハーモニーを見つける過程に着想を得た、最も強力な最適化アルゴリズムであるハーモニーサーチ(HS)を研究し、検証してみます。私たちの評価でトップになるのはどのアルゴリズムでしょうか。
時系列マイニングのためのデータラベル(第5回):ソケットを使用したEAへの応用とテスト
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
初心者のためのMetaTrader 5とRによるアルゴリズム取引
RとMetaTrader 5をシームレスに統合する技術を解き明かしながら、金融分析とアルゴリズム取引が出会う魅力的な探求に乗り出しましょう。この記事は、MetaTrader 5の強力な取引機能とRの精巧な分析の領域を橋渡しするためのガイドです。
MQL5の圏論(第2回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティではまだ比較的知られていません。この連載では、その概念のいくつかを紹介し、考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
MQL5の圏論(第13回):データベーススキーマを使用したカレンダーイベント
この記事は、MQL5での順序の圏論実装に従うもので、MQL5での分類のためにデータベーススキーマをどのように組み込むことができるかを検討します。取引関連のテキスト(文字列)情報を特定する際に、データベーススキーマの概念を圏論とどのように組み合わせることができるかの基礎を見ていきます。カレンダーイベントが中心です。
ニューラルネットワークが簡単に(第38回):不一致による自己監視型探索
強化学習における重要な問題のひとつは、環境探索です。前回までに、「内因性好奇心」に基づく研究方法について見てきました。今日は別のアルゴリズムを見てみましょう。不一致による探求です。
MQL5における修正グリッドヘッジEA(第1部):シンプルなヘッジEAを作る
古典的なグリッド戦略と古典的なヘッジ戦略を混合した、より高度なグリッドヘッジEAのベースとして、シンプルなヘッジEAを作成する予定です。この記事が終わるころには、簡単なヘッジ戦略の作り方がわかり、この戦略が本当に100%儲かるかどうかについての人々の意見も知ることができるでしょう。
データサイエンスと機械学習(第18回):市場複雑性を極める戦い - 打ち切りSVD v.s. NMF
打ち切り特異値分解(Truncated SVD)と非負行列因子分解(NMF)は次元削減技法です。両者とも、データ主導の取引戦略を形成する上で重要な役割を果たしています。次元削減、洞察の解明、定量分析の最適化など、複雑な金融市場をナビゲートするための情報満載のアプローチをご覧ください。
ニューラルネットワークが簡単に(第15部):MQL5によるデータクラスタリング
クラスタリング法について引き続き検討します。今回は、最も一般的なk-meansクラスタリング手法の1つを実装するために、新しいCKmeansクラスを作成します。テスト中には約500のパターンを識別することができました。
データサイエンスとML(第32回):AIモデルを最新の状態に保つ、オンライン学習
常に変化する取引の世界では、市場の変動に適応することは選択肢ではなく、必要不可欠です。新たなパターンやトレンドが日々生まれる中で、最先端の機械学習モデルでさえ、進化する環境に対応し続けることが困難になっています。本記事では、モデルを自動的に再訓練することで、その有効性を維持し、新しい市場データに柔軟に適応させる方法を解説します。
DoEasyライブラリの時系列(第44部): 指標バッファオブジェクトのコレクションクラス
この記事では、指標バッファオブジェクトのコレクションクラスの作成について説明しています。指標用の任意の数のバッファを作成して操作する機能をテストします(MQL指標で作成できるバッファの最大数は512です)。
一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)
今回は、Webからデータを取得し、エキスパートアドバイザー(EA)で使用する方法について引き続き考えていきます。今回は、代用できるシステムの開発に進みます。
時系列マイニングのためのデータラベル(第2回):Pythonを使ってトレンドマーカー付きデータセットを作成する
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
MQL5でのARIMAトレーニングアルゴリズムの実装
この記事では、関数最小化のPowell法を使用して、ボックス・ジェンキンス法の自己回帰和分移動平均モデルを適用するアルゴリズムを実装します。ボックスとジェンキンスは、ほとんどの時系列は2つのフレームワークの一方または両方でモデル化できると述べました。
経済予測:Pythonの可能性を探る
世界銀行の経済データは、将来の動向を予測するためにどのように活用できるのでしょうか。そして、AIモデルと経済学を組み合わせることで、どのようなことが可能になるのでしょうか。
データサイエンスとML(第42回):PythonでARIMAを用いた外国為替時系列予測、知っておくべきことすべて
ARIMAは自己回帰和分移動平均(Auto Regressive Integrated Moving Average)の略称で、強力な従来の時系列予測モデルです。このモデルは、時系列データ内の急上昇や変動を検出する機能により、次の値を正確に予測できます。この記事では、ARIMAが何であるか、どのように機能するか、市場での次の価格を高い精度で予測する際に何ができるかなどについて説明します。
データサイエンスと機械学習(第27回):MetaTrader 5取引ボットにおける畳み込みニューラルネットワーク(CNN)に価値はあるか?
畳み込みニューラルネットワーク(CNN)は、画像や映像のパターンを検出する能力に優れていることで有名で、さまざまな分野に応用されています。この記事では、金融市場の価値あるパターンを識別し、MetaTrader 5取引ボットのための効果的な取引シグナルを生成するCNNの可能性を探ります。このディープマシンラーニングの手法を、よりスマートな取引判断のためにどのように活用できるかを見てみましょう。
Rebuyのアルゴリズム:多通貨取引シミュレーション
本稿では、多通貨の価格設定をシミュレートする数理モデルを作成し、前回理論計算から始めた取引効率を高めるメカニズム探求の一環として、分散原理の研究を完成させます。
知っておくべきMQL5ウィザードのテクニック(第07回):樹状図
分析や予測を目的としたデータの分類は、機械学習の中でも非常に多様な分野であり、数多くのアプローチや手法があります。この作品では、そのようなアプローチのひとつである「凝集型階層分類」を取り上げます。
DoEasyライブラリでの価格(第63部): 板情報とその抽象リクエストクラス
本稿では、板情報を使用するための機能の開発を開始します。また、板情報抽象注文オブジェクトとその子孫のクラスも作成します。