MQL5における統計とデータの分析に関する記事

icon

数学的なモデルと確率の法則は多くのトレーダーにとって興味深いでしょう。数学はテクニカル指標の基本であり、トレーディングの結果を分析しストラテジーを開発するためには統計が必要です。

あいまいなロジック、デジタルフィルタ、マーケットプロファイル、コホーネンマップ、ニューラルガス、その他のトレーディングに使用できる多くのツールについてご覧ください。

新しい記事を追加
最新 | ベスト
preview
ニューラルネットワークが簡単に(第34部):FQF(Fully Parameterized Quantile Function、完全にパラメータ化された分位数関数)

ニューラルネットワークが簡単に(第34部):FQF(Fully Parameterized Quantile Function、完全にパラメータ化された分位数関数)

分散型Q学習アルゴリズムの研究を続けます。以前の記事では、分散型の分位数Q学習アルゴリズムについて検討しました。最初のアルゴリズムでは、与えられた範囲の値の確率を訓練しました。2番目のアルゴリズムでは、特定の確率で範囲を訓練しました。それらの両方で、1つの分布のアプリオリな知識を使用し、別の分布を訓練しました。この記事では、モデルが両方の分布で訓練できるようにするアルゴリズムを検討します。
preview
リプレイシステムの開発(第52回):物事は複雑になる(IV)

リプレイシステムの開発(第52回):物事は複雑になる(IV)

この記事では、信頼性と安定性のある操作を確保するために、マウスポインタを変更してコントロール指標との対話を有効にします。
preview
リプレイシステムの開発(第58回):サービスへの復帰

リプレイシステムの開発(第58回):サービスへの復帰

リプレイ/シミュレーターサービスの開発と改良を一時中断していましたが、再開することにしました。ターミナルグローバルのようなリソースの使用をやめたため、いくつかの部分を完全に再構築しなければなりません。ご心配なく。このプロセスを詳細に説明することで、誰もが私たちのサービスの進展についていけるようにします。
preview
ニューラルネットワークが簡単に(第40回):大量のデータでGo-Exploreを使用する

ニューラルネットワークが簡単に(第40回):大量のデータでGo-Exploreを使用する

この記事では、長い訓練期間に対するGo-Exploreアルゴリズムの使用について説明します。訓練時間が長くなるにつれて、ランダムな行動選択戦略が有益なパスにつながらない可能性があるためです。
preview
MQL5の圏論(第8回):モノイド

MQL5の圏論(第8回):モノイド

MQL5における圏論の実装についての連載を続けます。今回は、ルールと単位元を含むことで、圏論を他のデータ分類法と一線を画す始域(集合)としてモノイドを紹介します。
preview
信頼区間を用いて将来のパフォーマンスを見積もる

信頼区間を用いて将来のパフォーマンスを見積もる

この記事では、自動化された戦略の将来のパフォーマンスを推定する手段として、ブーストラッピング技術の応用について掘り下げます。
preview
データサイエンスと機械学習(第20回):アルゴリズム取引の洞察、MQL5でのLDAとPCAの対決

データサイエンスと機械学習(第20回):アルゴリズム取引の洞察、MQL5でのLDAとPCAの対決

MQL5取引環境での適用を解剖しながら、これらの強力な次元削減テクニックに隠された秘密を解き明かしていきます。線形判別分析(LDA)と主成分分析(PCA)のニュアンスを深く理解し、戦略開発と市場分析への影響を深く理解します。
preview
リプレイシステムの開発—市場シミュレーション(第2回):最初の実験(II)

リプレイシステムの開発—市場シミュレーション(第2回):最初の実験(II)

今回は、1分という目標を達成するために、別の方法を試してみましょう。ただし、このタスクは思っているほど単純ではありません。
preview
リプレイシステムの開発—市場シミュレーション(第5回):プレビューの追加

リプレイシステムの開発—市場シミュレーション(第5回):プレビューの追加

現実的で利用しやすい方法で市場リプレイシステムを実装する方法を開発することができたので、プロジェクトを続けて、リプレイの動作を改善するためのデータを追加してみましょう。
preview
MQL5の圏論(第3回)

MQL5の圏論(第3回)

圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター

PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター

PythonとMQL5で自動売買ロボットを開発する連載を続けます。今日は、モデルの選択と訓練、テスト、交差検証、グリッドサーチ、モデルアンサンブルの問題を解決します。
preview
MQL5での価格バーの並べ替え

MQL5での価格バーの並べ替え

この記事では、価格バーを並べ替えるアルゴリズムを紹介し、EAの潜在的な購入者を欺くためにストラテジーのパフォーマンスが捏造された事例を認識するために並べ替えテストをどのように使用できるかを詳述します。
preview
母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)

母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)

この記事では、様々な最適化問題において、電磁気的アルゴリズム(EM、electroMagnetism-like Algorithm)を使用する原理、方法、可能性について解説しています。EMアルゴリズムは、大量のデータや多次元関数を扱うことができる効率的な最適化ツールです。
preview
MQL5でJanus factorを実装する

MQL5でJanus factorを実装する

ゲイリー・アンダーソンは、「Janus factor」と名付けた理論に基づく市場分析法を開発しました。この理論は、トレンドを明らかにし、市場リスクを評価するために使用できる一連の指標を記述するものです。今回は、これらのツールをMQL5で実装してみます。
DoEasyライブラリでの価格(第60部): 銘柄ティックデータのシリーズリスト
DoEasyライブラリでの価格(第60部): 銘柄ティックデータのシリーズリスト

DoEasyライブラリでの価格(第60部): 銘柄ティックデータのシリーズリスト

本稿では、単一銘柄のティックデータを格納するためのリストを作成し、EAでの必要なデータの作成と取得を確認します。さらに、使用される銘柄ごとの個別のティックデータリストでティックデータのコレクションを構成します。
preview
母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)

母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)

この記事では、身体の免疫系の原理に基づいた最適化手法、つまりAISを改良した微小人工免疫系(Micro Artificial Immune System:Micro-AIS)について考察します。Micro-AISは、より単純な免疫系のモデルと単純な免疫情報処理操作を用います。また、この記事では、従来のAISと比較した場合のMicro-AISの利点と欠点についても触れています。
preview
データサイエンスと機械学習(第16回):決定木を見直す

データサイエンスと機械学習(第16回):決定木を見直す

連載「データサイエンスと機械学習」の最新作で、決定木の複雑な世界に飛び込みましょう。戦略的な洞察を求めるトレーダーのために、この記事は包括的な総括として、市場動向の分析において決定木が果たす強力な役割に光を当てています。これらのアルゴリズム木の根と枝を探り、取引の意思決定を強化する可能性を解き明かします。決定木について新たな視点から学び、複雑な金融市場をナビゲートする上で、決定木をどのように味方にできるかを発見しましょう。
preview
DoEasyライブラリの時系列(第49部): 複数銘柄・複数期間の複数バッファ標準指標

DoEasyライブラリの時系列(第49部): 複数銘柄・複数期間の複数バッファ標準指標

本稿では、ライブラリクラスを改善して、データを表示するために複数の指標バッファを必要とする複数銘柄・複数期間標準指標を開発する機能を実装します。
preview
DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト

DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト

本稿では、1つの指標に対して1つのバッファのすべてのデータを含むオブジェクトを開発します。このようなオブジェクトは、指標バッファのシリアルデータを格納するために必要になります。その助けを借りて、任意の指標のバッファデータ、および他の同様のデータを相互に並べ替えて比較できるようになります。
preview
Python、ONNX、MetaTrader 5:RobustScalerとPolynomialFeaturesデータ前処理を使用したRandomForestモデルの作成

Python、ONNX、MetaTrader 5:RobustScalerとPolynomialFeaturesデータ前処理を使用したRandomForestモデルの作成

この記事では、Pythonでランダムフォレストモデルを作成し、モデルを訓練して、データ前処理をおこなったONNXパイプラインとして保存します。その後、MetaTrader 5ターミナルでモデルを使用します。
preview
ニューラルネットワークが簡単に(第25部):転移学習の実践

ニューラルネットワークが簡単に(第25部):転移学習の実践

前々回、前回と、ニューラルネットワークのモデルを作成・編集するためのツールを開発しました。いよいよ転移学習技術の利用可能性を実例で評価することになります。
preview
母集団最適化アルゴリズム:魚群検索(FSS)

母集団最適化アルゴリズム:魚群検索(FSS)

魚群検索(FSS)は、そのほとんど(最大80%)が親族の群落の組織的な群れで泳ぐという魚の群れの行動から着想を得た新しい最適化アルゴリズムです。魚の集合体は、採餌の効率や外敵からの保護に重要な役割を果たすことが証明されています。
preview
母集団最適化アルゴリズム:Mind Evolutionary Computation (MEC)アルゴリズム

母集団最適化アルゴリズム:Mind Evolutionary Computation (MEC)アルゴリズム

この記事では、Simple Mind Evolutionary Computation(Simple MEC, SMEC)アルゴリズムと呼ばれる、MECファミリーのアルゴリズムを考察します。このアルゴリズムは、そのアイデアの美しさと実装の容易さで際立っています。
preview
ニュース取引が簡単に(第6回):取引の実施(III)

ニュース取引が簡単に(第6回):取引の実施(III)

この記事では、IDに基づいて個々のニュースイベントをフィルターする関数を実装します。さらに、以前のSQLクエリを改善し、追加情報が提供されたり、クエリの実行時間が短縮されるようになります。さらに、これまでの記事で作成したコードを機能的なものにします。
preview
知っておくべきMQL5ウィザードのテクニック(第30回):機械学習におけるバッチ正規化のスポットライト

知っておくべきMQL5ウィザードのテクニック(第30回):機械学習におけるバッチ正規化のスポットライト

バッチ正規化とは、ニューラルネットワークのような機械学習アルゴリズムに投入するデータの前処理です。これは、アルゴリズムが使用する活性化の種類を常に意識しながらおこなわれます。そこで、エキスパートアドバイザー(EA)を使って、そのメリットを享受するためのさまざまなアプローチを探ります。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第11回):初心者向け線形代数入門

MQL5で自己最適化エキスパートアドバイザーを構築する(第11回):初心者向け線形代数入門

本記事では、MQL5の行列・ベクトルAPIで利用できる強力な線形代数ツールの基礎を解説します。このAPIを効果的に利用するためには、これらの手法を賢く活用するための線形代数の原理をしっかり理解しておく必要があります。本稿は、MQL5でアルゴリズム取引をおこなう際にこの強力なライブラリを活用して作業を開始するために必要となる線形代数の最も重要な規則のいくつかを、読者が直感的に理解できるレベルで身につけることを目的としています。
preview
知っておくべきMQL5ウィザードのテクニック(第27回):移動平均と迎角

知っておくべきMQL5ウィザードのテクニック(第27回):移動平均と迎角

迎角はよく引用される指標で、その急勾配は優勢なトレンドの強さと強い相関があると理解されています。一般的にどのように使用され、理解されているかを調べ、それを使用する取引システムの利益のために、その測定方法に導入可能な変更があるかどうかを検討します。
preview
リプレイシステムの開発(第28回):エキスパートアドバイザープロジェクト-C_Mouseクラス(II)

リプレイシステムの開発(第28回):エキスパートアドバイザープロジェクト-C_Mouseクラス(II)

人々が初めてコンピューティングが可能なシステムを作り始めたとき、すべてには、プロジェクトを熟知しているエンジニアの参加が必要でした。コンピュータ技術の黎明期、プログラミング用の端末すらなかった時代の話です。それが発展し、より多くの人々が何かを創造できることに興味を持つようになると、新しいアイデアやプログラミングの方法が現れ、以前のようなコネクタの位置を変えるスタイルに取って変わりました。最初の端末が登場したのはこの時です。
preview
リプレイシステムの開発 - 市場シミュレーション(第18回):ティックそしてまたティック(II)

リプレイシステムの開発 - 市場シミュレーション(第18回):ティックそしてまたティック(II)

明らかに、現在の指標は1分足を作成するのに理想的な時間からは程遠いです。それが最初に修正することです。同期の問題を解決するのは難しくありません。難しそうに思えるかもしれませんが、実際はとても簡単です。前回の記事の目的は、チャート上の1分足を作成するために使用されたティックデータを気配値ウィンドウに転送する方法を説明することであったため、必要な修正はおこないませんでした。
DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション
DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション

DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション

プログラムでは作業に異なる銘柄を使用する可能性があるため、それぞれに個別のリストを作成する必要があります。本稿では、そのようなリストを組み合わせてティックデータコレクションにします。実際、これは、CObjectクラスのインスタンスへのポインタの動的配列のクラスおよび標準ライブラリの子孫に基づく通常のリストになります。
preview
ニューラルネットワークが簡単に(第41回):階層モデル

ニューラルネットワークが簡単に(第41回):階層モデル

この記事では、複雑な機械学習問題を解決するための効果的なアプローチを提供する階層的訓練モデルについて説明します。階層モデルはいくつかのレベルで構成され、それぞれがタスクの異なる側面を担当します。
preview
MetaTrader 5を使用したPythonの高頻度裁定取引システム

MetaTrader 5を使用したPythonの高頻度裁定取引システム

この記事では、ブローカーの観点から見て合法であり、外国為替市場において数千もの合成価格を生成・分析し、利益を上げるために取引をおこなう裁定取引システムの構築方法について解説します。
preview
ニューラルネットワークが簡単に(第19部):MQL5を使用したアソシエーションルール

ニューラルネットワークが簡単に(第19部):MQL5を使用したアソシエーションルール

アソシエーションルールの検討を続けます。前回の記事では、このタイプの問題の理論的側面について説明しました。この記事では、MQL5を使用したFPGrowthメソッドの実装を紹介します。また、実装したソリューションを実際のデータを使用してテストします。
preview
CatBoost機械学習モデルをトレンド追従戦略のフィルターとして活用する

CatBoost機械学習モデルをトレンド追従戦略のフィルターとして活用する

CatBoostは、定常的な特徴量に基づいて意思決定をおこなうことに特化した、強力なツリーベースの機械学習モデルです。XGBoostやRandom Forestといった他のツリーベースモデルも、堅牢性、複雑なパターンへの対応力、そして高い解釈性といった点で共通した特長を備えています。これらのモデルは、特徴量分析からリスク管理に至るまで、幅広い分野で活用されています。本記事では、学習済みのCatBoostモデルを、従来型の移動平均クロスを用いたトレンドフォロー戦略のフィルターとして活用する手順を解説します。
preview
MQL5での定量分析:有望なアルゴリズムの実装

MQL5での定量分析:有望なアルゴリズムの実装

定量分析とは何なのか、また、主要プレーヤーがどのように定量分析を使用しているのかを分析します。MQL5言語で定量分析アルゴリズムの1つを作成します。
preview
周波数領域でのフィルタリングと特徴抽出

周波数領域でのフィルタリングと特徴抽出

この記事では、予測モデルに有用な独自の特徴を抽出するために周波数領域で表現された時系列にデジタルフィルタを適用する方法を探ります。
preview
知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰

知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰

線形カーネルは、線形回帰やサポートベクターマシンの機械学習で使用される、この種の行列の中で最も単純な行列です。一方、Matérnカーネルは、以前の記事で紹介したRBF (Radial Basis Function)をより汎用的にしたもので、RBFが想定するほど滑らかではない関数をマッピングするのに長けています。売買条件を予測する際に、両方のカーネルを利用するカスタムシグナルクラスを構築します。
preview
価格変動モデルとその主な規定(第2回)。価格場の確率的発展方程式と観測されたランダムウォークの発生

価格変動モデルとその主な規定(第2回)。価格場の確率的発展方程式と観測されたランダムウォークの発生

この記事では、確率的な価格場の発展方程式と、今後の価格高騰の基準について考察しています。また、チャート上での価格値の本質と、そのランダムウォークが発生するメカニズムも明らかにします。
preview
時系列マイニングのためのデータラベル(第1回):EA操作チャートでトレンドマーカー付きデータセットを作成する

時系列マイニングのためのデータラベル(第1回):EA操作チャートでトレンドマーカー付きデータセットを作成する

この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
preview
リプレイシステムの開発—市場シミュレーション(第7回):最初の改善(II)

リプレイシステムの開発—市場シミュレーション(第7回):最初の改善(II)

前回の記事では、可能な限り最高の安定性を確保するために、レプリケーションシステムにいくつかの修正を加え、テストを追加しました。また、このシステムのコンフィギュレーションファイルの作成と使用も開始しました。