Artículos sobre automatización de sistemas comerciales en el lenguaje MQL5

icon

Lea los artículos sobre los sistemas de trading basados en las ideas muy variadas. Usted sabrá cómo usar los métodos estadísticos y los patrones en los gráficos de velas japonesas, cómo filtrar las señales y para qué sirven los indicadores semafóricos.

A través del Asistente MQL5 Usted aprenderá a crear los robots sin acudir a la programación para evaluar rápidamente las ideas comerciales, así como sabrá qué es lo que representan los algoritmos genéticos.

Nuevo artículo
últimas | mejores
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte IV): Capa de seguridad de inicio de sesión

Creación de un Panel de administración de operaciones en MQL5 (Parte IV): Capa de seguridad de inicio de sesión

Imagine un actor malicioso infiltrándose en la sala del administrador comercial y obteniendo acceso a las computadoras y al panel de administración que se utilizan para comunicar información valiosa a millones de comerciantes en todo el mundo. Una intrusión de este tipo podría tener consecuencias desastrosas, como el envío no autorizado de mensajes engañosos o clics aleatorios en botones que desencadenan acciones no deseadas. En esta discusión, exploraremos las medidas de seguridad en MQL5 y las nuevas características de seguridad que hemos implementado en nuestro Panel de administración para protegernos contra estas amenazas. Al mejorar nuestros protocolos de seguridad, nuestro objetivo es proteger nuestros canales de comunicación y mantener la confianza de nuestra comunidad comercial global. Encuentre más información en la discusión de este artículo.
preview
Kit de herramientas de negociación MQL5 (Parte 3): Desarrollo de una biblioteca EX5 para la gestión de órdenes pendientes

Kit de herramientas de negociación MQL5 (Parte 3): Desarrollo de una biblioteca EX5 para la gestión de órdenes pendientes

Aprenda a desarrollar e implementar una biblioteca EX5 integral de órdenes pendientes en su código o proyectos MQL5. Este artículo le mostrará cómo crear una extensa biblioteca EX5 de gestión de órdenes pendientes y lo guiará en el proceso de importarla e implementarla mediante la creación de un panel de negociación o una interfaz gráfica de usuario (GUI). El panel de órdenes del asesor experto permitirá a los usuarios abrir, monitorear y eliminar órdenes pendientes asociadas con un número mágico específico directamente desde la interfaz gráfica en la ventana del gráfico.
preview
Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 1): Configuración del panel

Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 1): Configuración del panel

En este artículo, creamos un panel de control interactivo para operaciones bursátiles utilizando la clase Controls en MQL5, diseñada para optimizar las operaciones bursátiles. El panel incluye un título, botones de navegación para Operar, Cerrar e Información, y botones de acción especializados para ejecutar operaciones y gestionar posiciones. Al final del artículo, tendrás un panel base listo para futuras mejoras en futuras entregas.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrolla y prueba una estrategia de trading con LLMs (II), LoRA-Tuning

Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrolla y prueba una estrategia de trading con LLMs (II), LoRA-Tuning

Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos adoptará un enfoque paso a paso para lograr este objetivo.
preview
Simulación de mercado (Parte 04): Creación de la clase C_Orders

Simulación de mercado (Parte 04): Creación de la clase C_Orders

En este artículo comenzaremos a construir la clase C_Orders para poder enviar órdenes al servidor de negociación. Lo haremos poco a poco, ya que el objetivo es explicar detalladamente cómo se realizará esto a través del sistema de mensajería.
preview
Características del Wizard MQL5 que debe conocer (Parte 42): Oscilador ADX

Características del Wizard MQL5 que debe conocer (Parte 42): Oscilador ADX

El ADX es otro indicador técnico relativamente popular utilizado por algunos traders para medir la fuerza de una tendencia predominante. Actuando como una combinación de otros dos indicadores, se presenta como un oscilador cuyos patrones exploramos en este artículo con la ayuda del asistente de ensamblaje MQL5 y sus clases de soporte.
preview
Simulación de mercado (Parte 02): Orden cruzada (II)

Simulación de mercado (Parte 02): Orden cruzada (II)

A diferencia de lo que se vio en el artículo anterior, aquí vamos a hacer el control de selección en el Asesor Experto. Aunque esta no es aún una solución definitiva, nos servirá por ahora. Así que acompaña el artículo para entender cómo implementar una de las soluciones posibles.
preview
Simulación de mercado (Parte 01): Orden cruzada (I)

Simulación de mercado (Parte 01): Orden cruzada (I)

A partir de este artículo, iniciaremos la segunda fase, que tratará la cuestión del sistema de repetición/simulación de mercado. Entonces, comenzaremos mostrando una posible solución para el cruce de órdenes. Esta solución que presentaré no es definitiva, sino una propuesta para el problema que aún será necesario abordar próximamente.
preview
Creación de un Asesor Experto MQL5 basado en la estrategia PIRANHA utilizando las Bandas de Bollinger

Creación de un Asesor Experto MQL5 basado en la estrategia PIRANHA utilizando las Bandas de Bollinger

En este artículo, creamos un Asesor Experto (Expert Advisor, EA) en MQL5 basado en la estrategia PIRANHA, utilizando Bandas de Bollinger para mejorar la efectividad comercial. Discutimos los principios clave de la estrategia, la implementación de la codificación y los métodos de prueba y optimización. Este conocimiento le permitirá implementar el EA en sus escenarios comerciales de manera efectiva.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte III): Ampliación de las clases incorporadas para la gestión de temas (II)

Creación de un Panel de administración de operaciones en MQL5 (Parte III): Ampliación de las clases incorporadas para la gestión de temas (II)

En este artículo, ampliaremos cuidadosamente la biblioteca Dialog existente para incorporar la lógica de gestión de temas. Además, integraremos métodos para cambiar de tema en las clases CDialog, CEdit y CButton utilizadas en nuestro proyecto de Panel de administración. Continúe leyendo para obtener perspectivas más reveladoras.
preview
Desarrollo de un sistema de repetición (Parte 78): Un nuevo Chart Trade (V)

Desarrollo de un sistema de repetición (Parte 78): Un nuevo Chart Trade (V)

En este artículo, veremos cómo deberemos implementar la parte del receptor. Es decir, aquí implementaremos una versión del Asesor Experto, solo para probar y aprender cómo funciona la comunicación vía protocolo. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
preview
Simulador rápido de estrategias comerciales en Python usando Numba

Simulador rápido de estrategias comerciales en Python usando Numba

Este artículo implementaremos un simulador rápido de estrategias para modelos de aprendizaje automático utilizando Numba. En cuanto a su velocidad, superará en un factor de 50 a un simulador de estrategias puramente basado en Python. El autor recomienda usar esta biblioteca para acelerar los cálculos matemáticos, y especialmente cuando se utilizan ciclos.
preview
Redes neuronales en el trading: Modelo hiperbólico de difusión latente (Final)

Redes neuronales en el trading: Modelo hiperbólico de difusión latente (Final)

El uso de procesos de difusión anisotrópica para codificar los datos de origen en un espacio latente hiperbólico, como se propone en el framework HypDIff, ayuda a preservar las características topológicas de la situación actual del mercado y mejora la calidad de su análisis. En el artículo anterior, empezamos a aplicar los enfoques propuestos usando herramientas MQL5. Hoy continuaremos el trabajo iniciado, llevándolo a su conclusión lógica.
preview
Redes neuronales en el trading: Modelo hiperbólico de difusión latente (HypDiff)

Redes neuronales en el trading: Modelo hiperbólico de difusión latente (HypDiff)

El artículo estudiará formas de codificar los datos de origen en un espacio latente hiperbólico mediante procesos de difusión anisotrópica. Esto ayudará a preservar con mayor precisión las características topológicas de la situación actual del mercado y mejorará la calidad de su análisis.
preview
Redes neuronales en el trading: Modelos de difusión direccional (DDM)

Redes neuronales en el trading: Modelos de difusión direccional (DDM)

Hoy proponemos al lector familiarizarse con los modelos de difusión direccional que explotan el ruido anisotrópico y direccional dependiente de los datos durante la difusión directa para capturar representaciones gráficas significativas.
preview
Características del Wizard MQL5 que debe conocer (Parte 41): Aprendizaje por refuerzo con redes neuronales (Deep-Q-Networks, DQN)

Características del Wizard MQL5 que debe conocer (Parte 41): Aprendizaje por refuerzo con redes neuronales (Deep-Q-Networks, DQN)

Deep-Q-Network es un algoritmo de aprendizaje de refuerzo que involucra redes neuronales para proyectar el próximo valor Q y la acción ideal durante el proceso de entrenamiento de un módulo de aprendizaje automático. Ya hemos considerado un algoritmo de aprendizaje de refuerzo alternativo, Q-Learning. Por lo tanto, este artículo presenta otro ejemplo de cómo un MLP entrenado con aprendizaje de refuerzo se puede utilizar dentro de una clase de señal personalizada.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 7): Análisis de comandos para la automatización de indicadores en los gráficos

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 7): Análisis de comandos para la automatización de indicadores en los gráficos

En este artículo, exploramos cómo integrar los comandos en Telegram con MQL5 para automatizar la adición de indicadores en los gráficos de trading. Cubrimos el proceso de análisis sintáctico de los comandos del usuario, ejecutándolos en MQL5, y probando el sistema para asegurar un comercio basado en indicadores sin problemas.
preview
Redes neuronales en el trading: Representación adaptativa de grafos (NAFS)

Redes neuronales en el trading: Representación adaptativa de grafos (NAFS)

Hoy le proponemos familiarizarse con el método Node-Adaptive Feature Smoothing (NAFS), que supone un enfoque no paramétrico para crear representaciones de nodos que no requiere entrenamiento de parámetros. El NAFS extrae las características de cada nodo considerando sus vecinos y luego combina adaptativamente dichas características para formar la representación final.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (I)

Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (I)

Hoy, exploraremos las posibilidades de incorporar múltiples estrategias en un Asesor Experto (Expert Advisor, EA) utilizando MQL5. Los asesores expertos ofrecen capacidades más amplias que solo indicadores y scripts, lo que permite enfoques comerciales más sofisticados que pueden adaptarse a las condiciones cambiantes del mercado. Encuentre más información en este artículo de discusión.
preview
Redes neuronales en el trading: Transformador contrastivo de patrones (Final)

Redes neuronales en el trading: Transformador contrastivo de patrones (Final)

En el último artículo de nuestra serie, analizamos el framework Atom-Motif Contrastive Transformer (AMCT), que usa el aprendizaje contrastivo para identificar patrones clave a todos los niveles, desde los elementos básicos hasta las estructuras complejas. En este artículo, continuaremos con la implementación de los enfoques AMCT usando MQL5.
preview
Desarrollamos un asesor experto multidivisa (Parte 19): Creando las etapas implementadas en Python

Desarrollamos un asesor experto multidivisa (Parte 19): Creando las etapas implementadas en Python

Hasta ahora, hemos analizado la automatización del inicio de los procedimientos de optimización secuencial de los asesores expertos exclusivamente en el simulador de estrategias estándar. Pero, ¿qué ocurrirá si, entre una ejecución y otra, queremos procesar los datos ya adquiridos con otras herramientas? Hoy intentaremos añadir la posibilidad de crear nuevos pasos de optimización ejecutados por programas escritos en Python.
preview
Análisis de múltiples símbolos con Python y MQL5 (Parte I): Fabricantes de circuitos integrados del NASDAQ

Análisis de múltiples símbolos con Python y MQL5 (Parte I): Fabricantes de circuitos integrados del NASDAQ

Acompáñenos mientras debatimos cómo puede utilizar la IA para optimizar el tamaño de sus posiciones y las cantidades de sus órdenes para maximizar la rentabilidad de su cartera. Mostraremos cómo identificar algorítmicamente una cartera óptima y adaptar su cartera a sus expectativas de rentabilidad o niveles de tolerancia al riesgo. En este debate, utilizaremos la biblioteca SciPy y el lenguaje MQL5 para crear una cartera óptima y diversificada utilizando todos los datos de que disponemos.
preview
Scalping Orderflow en MQL5

Scalping Orderflow en MQL5

Este Asesor Experto de MetaTrader 5 implementa una estrategia Scalping Orderflow con gestión avanzada de riesgos. Utiliza múltiples indicadores técnicos para identificar oportunidades de negociación basadas en los desequilibrios del flujo de órdenes (Orderflow). Las pruebas retrospectivas muestran una rentabilidad potencial, pero resaltan la necesidad de una mayor optimización, especialmente en la gestión de riesgos y en los ratios de resultados comerciales. Adecuado para operadores experimentados, requiere pruebas y comprensión exhaustivas antes de la implementación en vivo.
preview
Redes neuronales en el trading: Enfoque sin máscara para la predicción del movimiento de precios

Redes neuronales en el trading: Enfoque sin máscara para la predicción del movimiento de precios

En este artículo nos familiarizaremos con el método Mask-Attention-Free Transformer (MAFT) y su aplicación en el ámbito del trading. A diferencia de los Transformers tradicionales, que requieren el enmascaramiento de los datos durante el procesamiento de la secuencia, el MAFT optimiza el proceso de atención eliminando la necesidad de enmascaramiento, lo que mejora significativamente la eficiencia computacional.
preview
Redes neuronales en el trading: Superpoint Transformer (SPFormer)

Redes neuronales en el trading: Superpoint Transformer (SPFormer)

En este artículo, nos familiarizaremos con un método de segmentación de objetos 3D basado en el Superpoint Transformer (SPFormer), que elimina la necesidad de agregar datos intermedios, lo cual acelera el proceso de segmentación y mejora el rendimiento del modelo.
preview
Desarrollo de un sistema de repetición (Parte 77): Un nuevo Chart Trade (IV)

Desarrollo de un sistema de repetición (Parte 77): Un nuevo Chart Trade (IV)

En este artículo, explicaré algunos detalles y precauciones que debes tener en cuenta al crear un protocolo de comunicación. Son cosas bastante básicas y simples. No voy a profundizar demasiado en este artículo. Pero es necesario que comprendas su contenido para entender lo que sucederá en el receptor.
preview
Implementación de breakeven en MQL5 (Parte 1): Clase base y breakeven por puntos fijos

Implementación de breakeven en MQL5 (Parte 1): Clase base y breakeven por puntos fijos

En este artículo se estudia el uso del breakeven aplicado a estrategias automáticas en MQL5. Se parte de una explicación sencilla sobre qué es, cómo se implementa y cuáles son sus posibles variantes. Luego, se integra la funcionalidad dentro de un bot de Order Blocks, creado en el último artículo sobre gestión de riesgo. Para evaluar su comportamiento, se ejecutaron dos backtest bajo condiciones específicas: uno sin breakeven y otro con esta función activa.
preview
Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoría

Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoría

Este artículo se centra en el algoritmo metaheurístico Atmosphere Clouds Model Optimisation (ACMO), que modela el comportamiento de las nubes para resolver problemas de optimización. El algoritmo usa los principios de generación, movimiento y propagación de nubes, adaptándose a las "condiciones meteorológicas" del espacio de soluciones. El artículo revela cómo una simulación meteorológica del algoritmo encuentra soluciones óptimas en un espacio de posibilidades complejo y detalla las etapas del ACMO, incluida la preparación del "cielo", el nacimiento de las nubes, su movimiento y la concentración de la lluvia.
preview
Características del Wizard MQL5 que debe conocer (Parte 40): SAR parabólico

Características del Wizard MQL5 que debe conocer (Parte 40): SAR parabólico

El SAR parabólico (Stop-and-Reversal, SAR) es un indicador de confirmación de tendencia y de puntos de finalización de tendencia. Debido a que es un rezagado en la identificación de tendencias, su propósito principal ha sido posicionar trailing stop loss en posiciones abiertas. Sin embargo, exploramos si realmente podría usarse como una señal de Asesor Experto, gracias a clases de señales personalizadas de Asesores Expertos ensamblados por un asistente.
preview
Redes neuronales en el trading: Estudio de la estructura local de datos

Redes neuronales en el trading: Estudio de la estructura local de datos

La identificación y preservación eficaz de la estructura local de los datos del mercado en condiciones de ruido es una tarea importante en el trading. El uso del mecanismo de Self-Attention ha ofrecido buenos resultados en el procesamiento de estos datos, pero el método clásico no tiene en cuenta las características locales de la estructura original. En este artículo, le propongo familiarizarse con un algoritmo que considera estas dependencias estructurales.
preview
Características del Wizard MQL5 que debe conocer (Parte 39): Índice de fuerza relativa

Características del Wizard MQL5 que debe conocer (Parte 39): Índice de fuerza relativa

El Índice de fuerza relativa (Relative Strength Index, RSI) es un oscilador de momento popular que mide el ritmo y el tamaño del cambio de precio reciente de un valor para evaluar situaciones de sobrevaloración y subvaloración en el precio del valor. Estos conocimientos sobre velocidad y magnitud son clave para definir puntos de reversión. Ponemos este oscilador a trabajar en otra clase de señal personalizada y examinamos las características de algunas de sus señales. Sin embargo, comenzaremos resumiendo lo que comenzamos anteriormente sobre las Bandas de Bollinger.
preview
Redes neuronales en el trading: Detección de objetos con reconocimiento de escena (HyperDet3D)

Redes neuronales en el trading: Detección de objetos con reconocimiento de escena (HyperDet3D)

Le proponemos que conozca un nuevo enfoque de la detección de objetos mediante hiper-redes: una hiper-red de generación de coeficientes de peso para el modelo básico que permite tener en cuenta las peculiaridades del estado actual del mercado. Este enfoque mejora la precisión de las previsiones adaptando el modelo a las distintas condiciones comerciales.
preview
Algoritmo de tiro con arco - Archery Algorithm (AA)

Algoritmo de tiro con arco - Archery Algorithm (AA)

Este artículo detalla un algoritmo de optimización inspirado en el tiro con arco, centrado en el uso del método de la ruleta como mecanismo de selección de zonas prometedoras para las "flechas". Este método nos permite evaluar la calidad de las soluciones y seleccionar las más prometedoras para seguir estudiándolas.
preview
Características del Wizard MQL5 que debe conocer (Parte 38): Bandas de Bollinger

Características del Wizard MQL5 que debe conocer (Parte 38): Bandas de Bollinger

Las bandas de Bollinger son un indicador de envolvente muy común utilizado por muchos traders para colocar y cerrar operaciones manualmente. Examinamos este indicador considerando las diferentes señales posibles que genera, y vemos cómo se podrían poner en uso en un Asesor Experto montado por un asistente.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 6): Añadir botones interactivos en línea

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 6): Añadir botones interactivos en línea

En este artículo, integramos botones interactivos en línea en un Asesor Experto MQL5, permitiendo el control en tiempo real a través de Telegram. Cada pulsación de botón desencadena acciones específicas y envía respuestas al usuario. También modularizamos las funciones para manejar los mensajes de Telegram y las consultas de devolución de llamada de forma eficiente.
preview
Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)

Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)

En este artículo analizaremos los algoritmos necesarios para utilizar métodos de atención en la resolución de problemas de detección de objetos en nubes de puntos. La detección de objetos en nubes de puntos es bastante importante para muchas aplicaciones del mundo real.
preview
Redes neuronales en el trading: Aprendizaje jerárquico de características en nubes de puntos

Redes neuronales en el trading: Aprendizaje jerárquico de características en nubes de puntos

Seguimos estudiando los algoritmos para extraer características de una nube de puntos. Y en este artículo, nos familiarizaremos con los mecanismos para mejorar la eficacia del método PointNet.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte II): Mejorar la capacidad de respuesta y la rapidez de los mensajes

Creación de un Panel de administración de operaciones en MQL5 (Parte II): Mejorar la capacidad de respuesta y la rapidez de los mensajes

En este artículo, vamos a mejorar la capacidad de respuesta del Panel de administración que hemos creado anteriormente. Además, exploraremos la importancia de los mensajes rápidos en el contexto de las señales de negociación.
preview
Ejemplo de optimización estocástica y control óptimo

Ejemplo de optimización estocástica y control óptimo

Este Asesor Experto, llamado SMOC, que significa Stochastic Model Optimal Control (Modelo Estocástico de Control Óptimo), es un ejemplo sencillo de un avanzado sistema algorítmico de trading para MetaTrader 5. Utiliza una combinación de indicadores técnicos, control predictivo de modelos y gestión dinámica de riesgos para tomar decisiones comerciales. El EA incorpora parámetros adaptativos, dimensionamiento de posiciones basado en la volatilidad y análisis de tendencias para optimizar su rendimiento en diferentes condiciones de mercado.
preview
Redes neuronales en el trading: Transformador contrastivo de patrones

Redes neuronales en el trading: Transformador contrastivo de patrones

El transformador contrastivo de patrones analiza la situación del mercado tanto a nivel de velas individuales como de patrones completos, lo cual contribuye a mejorar la calidad de modelado de las tendencias del mercado, mientras que el uso del aprendizaje por contraste para emparejar las representaciones de velas y patrones conduce a la autorregulación y a la mejora de la precisión de la predicción.