Find us on Twitter!
Join our fan page
¡Escriba un artículo
y le pagaremos 200 USD por él!
Descargar MetaTrader 5 con nuevas posibilidades de trading automático

Artículos sobre programación y uso de robots comerciales en el lenguaje MQL5

icon

Los Asesores Expertos creados para la plataforma MetaTrader ejecutan una gran variedad de funciones ideadas por sus desarrolladores. Los robots comerciales son capaces de realizar el seguimiento de los instrumentos financieros 24 horas al día, copiar las operaciones, confeccionar y enviar los informes, analizar las noticias, e incluso facilitar al operador una interfaz gráfica personalizada desarrollada por encargo.

Los artículos contienen las técnicas de programación, ideas matemáticas para el procesamiento de datos, consejos para la creación y el encargo de robots comerciales.

Nuevo artículo
últimas | mejores
preview
Redes neuronales: así de sencillo (Parte 48): Métodos para reducir la sobreestimación de los valores de la función Q

Redes neuronales: así de sencillo (Parte 48): Métodos para reducir la sobreestimación de los valores de la función Q

En el artículo anterior, presentamos el método DDPG, que nos permite entrenar modelos en un espacio de acción continuo. Sin embargo, al igual que otros métodos de aprendizaje Q, el DDPG tiende a sobreestimar los valores de la función Q. Con frecuencia, este problema provoca que entrenemos los agentes con una estrategia subóptima. En el presente artículo, analizaremos algunos enfoques para superar el problema mencionado.
preview
Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD

Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD

El presente artículo representa el primer intento de desarrollar un cliente MQTT nativo para MQL5. El MQTT es un protocolo de comunicación "publicación-suscripción". Es ligero, abierto, simple y está diseñado para implementarse con facilidad, lo cual permite su uso en muchas situaciones.
preview
Desarrollo de un factor de calidad para los EAs

Desarrollo de un factor de calidad para los EAs

En este artículo, te explicaremos cómo desarrollar un factor de calidad que tu Asesor Experto (EA) pueda mostrar en el simulador de estrategias. Te presentaremos dos formas de cálculo muy conocidas (Van Tharp y Sunny Harris).
preview
Programación orientada a objetos (OOP) en MQL5

Programación orientada a objetos (OOP) en MQL5

Como desarrolladores, debemos aprender a crear y desarrollar software que sea reutilizable y flexible sin duplicar código, especialmente si tenemos diferentes objetos con comportamientos distintos. Esto se puede lograr fácilmente utilizando las técnicas y principios de la programación orientada a objetos. En este artículo le presentamos los conceptos básicos de la programación orientada a objetos en MQL5.
preview
Posibilidades de ChatGPT de OpenAI en el marco de desarrollo de MQL4 y MQL5

Posibilidades de ChatGPT de OpenAI en el marco de desarrollo de MQL4 y MQL5

En este artículo, experimentaremos y analizaremos la inteligencia artificial ChatGPT de OpenAI para comprender sus capacidades y reducir el tiempo y la intensidad del trabajo en el desarrollo de nuestros asesores, indicadores y scripts. Asimismo, repasaremos rápidamente esta tecnología e intentaremos ver cómo usarla correctamente para programar en MQL4 y MQL5.
preview
Estrategia comercial de reversión a la media simple

Estrategia comercial de reversión a la media simple

La reversión a la media es una técnica de negociación de contratendencia en la que el tráder espera que el precio regrese a algún tipo de equilibrio, que generalmente se mide usando una media u otro indicador estadístico de la tendencia promediada.
preview
Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados

Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados

El entrenamiento de habilidades útiles sin una función de recompensa explícita es uno de los principales desafíos del aprendizaje por refuerzo jerárquico. Ya nos hemos familiarizado antes con dos algoritmos para resolver este problema, pero el tema de la exploración del entorno sigue abierto. En este artículo, veremos un enfoque distinto en el entrenamiento de habilidades, cuyo uso dependerá directamente del estado actual del sistema.
preview
Desarrollando un canal de Donchian personalizado con la ayuda de MQL5

Desarrollando un canal de Donchian personalizado con la ayuda de MQL5

Existen muchas herramientas técnicas que se pueden usar para visualizar los canales de precios. Una de esas herramientas es el canal de Donchian. En este artículo, aprenderemos cómo crear un canal de Donchian, y también a usarlo como indicador personalizado dentro de un asesor experto.
preview
Redes neuronales: así de sencillo (Parte 44): Estudiamos las habilidades de forma dinámica

Redes neuronales: así de sencillo (Parte 44): Estudiamos las habilidades de forma dinámica

En el artículo anterior, nos familiarizamos con el método DIAYN, que ofrece un algoritmo para el aprendizaje de diversas habilidades. El uso de las habilidades aprendidas puede aprovecharse en diversas tareas, pero estas habilidades pueden resultar bastante impredecibles, lo cual puede dificultar su uso. En este artículo, analizaremos un algoritmo para el aprendizaje de habilidades predecibles.
preview
Mejore sus gráficos comerciales con una GUI interactiva basada en MQL5 (Parte I): Interfaz móvil (I)

Mejore sus gráficos comerciales con una GUI interactiva basada en MQL5 (Parte I): Interfaz móvil (I)

Libere el poder de la presentación dinámica de datos en sus estrategias o utilidades comerciales con nuestra guía detallada para desarrollar una GUI móvil en MQL5. Sumérjase en los eventos del gráfico y aprenda a diseñar e implementar una GUI simple y con capacidad de movimiento múltiple en un solo gráfico. El artículo también analizará la adición de elementos a una interfaz gráfica, aumentando su funcionalidad y atractivo estético.
preview
Algoritmo de recompra: simulación del comercio multidivisa

Algoritmo de recompra: simulación del comercio multidivisa

En este artículo crearemos un modelo matemático para simular la formación de precios multidivisa y completaremos el estudio del principio de diversificación en la búsqueda de mecanismos para aumentar la eficiencia del trading que inicié en el artículo anterior con cálculos teóricos.
preview
Redes neuronales: así de sencillo (Parte 41): Modelos jerárquicos

Redes neuronales: así de sencillo (Parte 41): Modelos jerárquicos

El presente artículo describe modelos de aprendizaje jerárquico que ofrecen un enfoque eficiente para resolver problemas complejos de aprendizaje automático. Los modelos jerárquicos constan de varios niveles; cada uno de ellos es responsable de diferentes aspectos del problema.
preview
Teoría de categorías en MQL5 (Parte 8): Monoides

Teoría de categorías en MQL5 (Parte 8): Monoides

El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Aquí presentamos los monoides como un dominio (conjunto) que distingue la teoría de categorías de otros métodos de clasificación de datos al incluir reglas y un elemento de identidad.
preview
Algoritmo de recompra: un modelo matemático para aumentar la eficiencia

Algoritmo de recompra: un modelo matemático para aumentar la eficiencia

En este artículo, usaremos el algoritmo de recompra como guía en un mundo con una mayor comprensión de la efectividad de los sistemas comerciales y comenzaremos a trabajar en los principios generales para mejorar la eficiencia comercial usando las matemáticas y la lógica; también aplicaremos los métodos menos comunes para aumentar la eficiencia en el contexto del uso de cualquier sistema comercial.
preview
Aprendizaje automático y Data Science (Parte 14): Aplicación de los mapas de Kohonen a los mercados

Aprendizaje automático y Data Science (Parte 14): Aplicación de los mapas de Kohonen a los mercados

¿Quiere encontrar un nuevo enfoque comercial que lo ayude a orientarse en mercados complejos y en cambio constante? Eche un vistazo a los mapas de Kohonen, una forma innovadora de redes neuronales artificiales que puede ayudarle a descubrir patrones y tendencias ocultos en los datos del mercado. En este artículo, veremos cómo funcionan los mapas de Kohonen y cómo usarlos para desarrollar estrategias comerciales efectivas. Creo que este nuevo enfoque resultará de interés tanto a los tráders experimentados como para los principiantes.
preview
Redes neuronales: así de sencillo (Parte 37): Atención dispersa (Sparse Attention)

Redes neuronales: así de sencillo (Parte 37): Atención dispersa (Sparse Attention)

En el artículo anterior, analizamos los modelos relacionales que utilizan mecanismos de atención en su arquitectura. Una de las características de dichos modelos es su mayor uso de recursos informáticos. Este artículo propondrá uno de los posibles mecanismos para reducir el número de operaciones computacionales dentro del bloque Self-Attention o de auto-atención, lo cual aumentará el rendimiento del modelo en su conjunto.
preview
Teoría de categorías en MQL5 (Parte 4): Intervalos, experimentos y composiciones

Teoría de categorías en MQL5 (Parte 4): Intervalos, experimentos y composiciones

La teoría de categorías es una rama de las matemáticas diversa y en expansión, relativamente inexplorada aún en la comunidad MQL5. Esta serie de artículos tiene como objetivo describir algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
preview
Aprendiendo a diseñar un sistema de trading con Fibonacci

Aprendiendo a diseñar un sistema de trading con Fibonacci

El presente artículo supone la continuación de la serie dedicada a la construcción de sistemas comerciales basados ​​en los indicadores más populares. La próxima herramienta técnica que analizaremos será el indicador de Fibonacci. Hoy veremos cómo escribir un programa basado en las señales de este indicador.
preview
Aprendizaje automático y Data Science (Parte 12): ¿Es posible tener éxito en el mercado usando redes neuronales de autoaprendizaje?

Aprendizaje automático y Data Science (Parte 12): ¿Es posible tener éxito en el mercado usando redes neuronales de autoaprendizaje?

Probablemente mucha gente esté cansada de intentar predecir el mercado bursátil constantemente. ¿No le gustaría tener una bola de cristal que le ayudara a tomar decisiones de inversión más informadas? Las redes neuronales de autoaprendizaje podrían ser su solución. En este artículo, analizaremos si estos potentes algoritmos pueden ayudarnos a "subirnos a la ola" y ser más astutos que el mercado bursátil. Mediante el análisis de grandes cantidades de datos y la identificación de patrones, las redes neuronales de autoaprendizaje pueden hacer predicciones que a menudo resultan más precisas que las realizadas por los tráders. Veamos si estas tecnologías de vanguardia pueden usarse para tomar decisiones de inversión inteligentes y ganar más.
preview
Redes neuronales: así de sencillo (Parte 36): Modelos relacionales de aprendizaje por refuerzo (Relational Reinforcement Learning)

Redes neuronales: así de sencillo (Parte 36): Modelos relacionales de aprendizaje por refuerzo (Relational Reinforcement Learning)

En los modelos de aprendizaje por refuerzo analizados anteriormente, usamos varias opciones de redes convolucionales que pueden identificar varios objetos en los datos originales. La principal ventaja de las redes convolucionales es su capacidad de identificar objetos independientemente de la ubicación de estos. Al mismo tiempo, las redes convolucionales no siempre son capaces de hacer frente a diversas deformaciones de los objetos y al ruido. Pero estos problemas pueden resolverse usando el modelo relacional.