Redes neuronales en el trading: Jerarquía de habilidades para el comportamiento adaptativo de agentes (HiSSD)
Hoy nos familiarizaremos con el framework HiSSD, que combina el aprendizaje jerárquico y los enfoques multiagente para crear sistemas adaptativos. En este artículo, detallaremos cómo este enfoque innovador ayuda a identificar patrones ocultos en los mercados financieros y a optimizar las estrategias comerciales en un entorno descentralizado.
Automatización de estrategias de trading en MQL5 (Parte 13): Algoritmo de trading para patrón Hombro-Cabeza-Hombro
En este artículo automatizamos el patrón Hombro-Cabeza-Hombro en MQL5. Analizamos su arquitectura, implementamos un EA para detectarlo y operar, y realizamos una prueba retrospectiva de los resultados. El proceso revela un algoritmo de negociación práctico con margen para mejoras.
Redes neuronales en el trading: Detección de anomalías en el dominio de la frecuencia (Final)
Seguimos trabajando en la aplicación de los planteamientos del framework CATCH, que combina la transformada de Fourier y el mecanismo de parcheo de frecuencias para posibilitar una detección precisa de las anomalías del mercado. En este artículo, finalizaremos nuestra propia visión de los enfoques propuestos y probaremos los nuevos modelos con datos históricos reales.
Redes neuronales en el trading: Detección de anomalías en el dominio de la frecuencia (CATCH)
El framework CATCH combina la transformada de Fourier y el parcheo de frecuencias para detectar con precisión anomalías del mercado inaccesibles a los métodos tradicionales. En el presente artículo, analizaremos cómo este enfoque revela patrones ocultos en los datos financieros.
Explorando técnicas avanzadas de aprendizaje automático en la estrategia Darvas Box Breakout
La estrategia Darvas Box Breakout, creada por Nicolas Darvas, es un enfoque técnico de negociación que detecta posibles señales de compra cuando el precio de una acción sube por encima de un rango establecido, lo que sugiere un fuerte impulso alcista. En este artículo, aplicaremos este concepto estratégico como ejemplo para explorar tres técnicas avanzadas de aprendizaje automático. Entre ellas se incluyen el uso de un modelo de aprendizaje automático para generar señales en lugar de filtrar operaciones, el empleo de señales continuas en lugar de discretas y el uso de modelos entrenados en diferentes marcos temporales para confirmar las operaciones.
Automatización de estrategias de trading en MQL5 (Parte 12): Implementación de la estrategia Mitigation Order Blocks (MOB)
En este artículo creamos un sistema de trading en MQL5 que se encarga de detectar de forma automática los "order blocks", un concepto utilizado en el método Smart Money. Describimos las reglas de la estrategia, implementamos la lógica en MQL5 e integramos la gestión de riesgos para una ejecución eficaz de las operaciones. Por último, realizamos pruebas retrospectivas del sistema para evaluar su rendimiento y perfeccionarlo con el fin de obtener resultados óptimos.
Ondas triangulares y de sierra: herramientas para el tráder
Uno de los métodos de análisis técnico es el análisis de ondas. En este artículo nos ocuparemos de las ondas triangulares y de sierra. Usando estas ondas como base, podemos construir varios indicadores técnicos, con la ayuda de los cuales se puede analizar el movimiento de los precios en el mercado.
Redes neuronales en el trading: Detección adaptativa de anomalías del mercado (Final)
Seguimos construyendo los algoritmos que sustentan el framework DADA, una herramienta avanzada para detectar anomalías en las series temporales. Este enfoque permite distinguir eficazmente las fluctuaciones aleatorias de los valores atípicos significativos. A diferencia de los métodos clásicos, el DADA se adapta dinámicamente a los distintos tipos de datos, seleccionando el nivel de compresión óptimo en cada caso.
Operar con el Calendario Económico MQL5 (Parte 6): Automatizar la entrada de operaciones con análisis de noticias y temporizadores de cuenta regresiva
En este artículo, implementamos la entrada automática de operaciones utilizando el Calendario Económico MQL5, aplicando filtros definidos por el usuario y desfases temporales para identificar eventos noticiosos que cumplan los requisitos. Comparamos los pronósticos y los valores anteriores para determinar si abrir una operación de COMPRA o VENTA. Los temporizadores de cuenta regresiva dinámicos muestran el tiempo restante hasta la publicación de las noticias y se reinician automáticamente después de una operación.
Desarrollamos un asesor experto multidivisas (Parte 25): Conectamos una nueva estrategia (II)
En este artículo seguiremos conectando la nueva estrategia con el sistema de optimización automática que hemos creado. Asimismo, veremos qué cambios habrá que introducir en el EA de creación del proyecto de optimización y en los EAs de la segunda y tercera fase.
Introducción a MQL5 (Parte 13): Guía para principiantes sobre cómo crear indicadores personalizados (II)
Este artículo le guía a través del proceso de creación de un indicador Heikin Ashi personalizado desde cero y muestra cómo integrar indicadores personalizados en un EA. Abarca cálculos de indicadores, lógica de ejecución de operaciones y técnicas de gestión de riesgos para mejorar las estrategias de negociación automatizadas.
Introducción a MQL5 (Parte 11): Guía de trabajo con indicadores incorporados en MQL5 para principiantes (II)
Descubra cómo desarrollar un Asesor Experto (Expert Advisor, EA) en MQL5 utilizando múltiples indicadores como el RSI, la media móvil y el oscilador estocástico para detectar divergencias alcistas y bajistas ocultas. En este artículo aprenda a implementar una gestión de riesgos eficaz y a automatizar las operaciones con ejemplos detallados y código fuente totalmente comentado con fines educativos.
Redes neuronales en el trading: Detección adaptativa de anomalías del mercado (DADA)
Hoy vamos a familiarizarnos con el framework DADA, un método innovador para detectar anomalías en las series temporales. Este ayuda a distinguir las fluctuaciones aleatorias de las presuntas anomalías. A diferencia de los métodos tradicionales, el DADA puede adaptarse de forma flexible a distintos datos. En lugar de un nivel de compresión fijo, usa múltiples opciones y elige la más adecuada para cada caso.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 15): Introducción a la teoría de los cuartos (I) - Dibujando la teoría de cuartos
Los puntos de soporte y resistencia son niveles críticos que indican posibles reversiones y continuaciones de la tendencia. Aunque identificar estos niveles puede resultar complicado, una vez que los localices, estarás bien preparado para navegar por el mercado. Si necesitas más ayuda, échale un vistazo a la herramienta Quarters Drawer que aparece en este artículo, te ayudará a identificar los niveles de soporte y resistencia principales y secundarios.
Características del Wizard MQL5 que debe conocer (Parte 56): Fractales de Bill Williams
Los fractales de Bill Williams son un indicador potente que es fácil pasar por alto cuando se ve por primera vez en un gráfico de precios. Parece demasiado recargado y probablemente no lo suficientemente incisivo. Nuestro objetivo es desvelar este indicador examinando lo que sus diversos patrones podrían lograr cuando se analizan con pruebas de avance en todos los casos, con un asesor experto creado por un asistente.
Desarrollamos un asesor experto multidivisas (Parte 24): Añadimos una nueva estrategia (I)
En este artículo, veremos cómo conectar una nueva estrategia al sistema de optimización automática que hemos creado. Veamos qué tipo de EA necesitamos crear y si será posible hacerlo sin cambiar los archivos de la librería o minimizando los cambios necesarios.
Análisis de múltiples símbolos con Python y MQL5 (Parte 3): Tipos de cambio triangulares
Los operadores suelen enfrentarse a pérdidas por señales falsas, mientras que esperar a la confirmación puede llevar a perder oportunidades. Este artículo presenta una estrategia comercial triangular que utiliza el precio de la plata en dólares (XAGUSD) y euros (XAGEUR), junto con el tipo de cambio EURUSD, para filtrar el ruido. Al aprovechar las relaciones entre mercados, los operadores pueden descubrir el sentimiento oculto y perfeccionar sus entradas en tiempo real.
Automatización de estrategias de trading en MQL5 (Parte 11): Desarrollo de un sistema de negociación de cuadrícula multinivel
En este artículo, desarrollamos un sistema EA de trading de cuadrícula multinivel utilizando MQL5, centrándonos en la arquitectura y el diseño del algoritmo que hay detrás de las estrategias de trading de cuadrícula. Exploramos la implementación de una lógica de red multicapa y técnicas de gestión de riesgos para hacer frente a las condiciones variables del mercado. Por último, ofrecemos explicaciones detalladas y consejos prácticos para guiarle en la creación, prueba y perfeccionamiento del sistema de negociación automatizado.
Automatización de estrategias de trading en MQL5 (Parte 10): Desarrollo de la estrategia Trend Flat Momentum
En este artículo, desarrollamos un Asesor Experto en MQL5 para la estrategia Trend Flat Momentum. Combinamos un cruce de dos medias móviles con filtros de impulso RSI y CCI para generar señales de trading. También cubrimos las pruebas retrospectivas y las posibles mejoras para el rendimiento en el mundo real.
Características del Wizard MQL5 que debe conocer (Parte 55): SAC con Prioritized Experience Replay (PER)
Los búferes de reproducción en el aprendizaje por refuerzo son especialmente importantes con algoritmos fuera de política como DQN o SAC. Esto pone entonces el foco en el proceso de muestreo de este búfer de memoria. Mientras que las opciones predeterminadas con SAC, por ejemplo, utilizan una selección aleatoria de este búfer, los búferes de reproducción de experiencia priorizada ajustan esto mediante un muestreo del búfer basado en una puntuación TD. Repasamos la importancia del aprendizaje por refuerzo y, como siempre, examinamos solo esta hipótesis (no la validación cruzada) en un asesor experto creado por un asistente.
Redes neuronales en el trading: Clusterización doble de series temporales (Final)
Continuamos implementando los enfoques propuestos por los autores del framework DUET, que ofrece un enfoque innovador para el análisis de series temporales, combinando la clusterización temporal y de canales para identificar patrones ocultos en los datos analizados.
Automatización de estrategias de trading en MQL5 (Parte 9): Creación de un asesor experto para la estrategia de ruptura asiática
En este artículo, creamos un Asesor Experto en MQL5 para la estrategia de ruptura asiática calculando los máximos y mínimos de la sesión y aplicando un filtro de tendencia con una media móvil. Implementamos estilos dinámicos para objetos, entradas de tiempo definidas por el usuario y una sólida gestión de riesgos. Por último, mostramos técnicas de pruebas retrospectivas y optimización para perfeccionar el sistema.
Automatización de estrategias de trading en MQL5 (Parte 8): Creación de un Asesor Experto con patrones armónicos Butterfly
En este artículo, creamos un Asesor Experto MQL5 para detectar patrones armónicos Butterfly. Identificamos los puntos pivote y validamos los niveles de Fibonacci para confirmar el patrón. A continuación, visualizamos el patrón en el gráfico y ejecutamos automáticamente las operaciones cuando se confirman.
Redes neuronales en el trading: Clusterización doble de series temporales (DUET)
El framework DUET ofrece un enfoque innovador del análisis de series temporales, combinando la clusterización temporal y por canales para revelar patrones ocultos en los datos analizados. Esto permite a los modelos adaptarse a los cambios a lo largo del tiempo y mejorar la calidad de las previsiones eliminando el ruido.
Automatización de estrategias de trading en MQL5 (Parte 7): Creación de un EA para el comercio en cuadrícula con escalado dinámico de lotes
En este artículo, creamos un asesor experto de trading con cuadrículas en MQL5 que utiliza el escalado dinámico de lotes. Cubrimos el diseño de la estrategia, la implementación del código y el proceso de backtesting. Por último, compartimos conocimientos clave y mejores prácticas para optimizar el sistema de comercio automatizado.
Cierres parciales condicionales (Parte 1): Creación de la clase base
En este artículo implementaremos un nuevo método para la gestión de posiciones, parecido a los cierres parciales "simples" que implementamos anteriormente, pero con una diferencia importante. En lugar de basarse en niveles de takeprofit fijos, este enfoque aplica los cierres parciales al momento de cumplirse cierta condición específica. De ahí su nombre: "Cierres parciales condicionales". En esta primera parte de la implementación en MQL5 veremos cómo funciona esta técnica de gestión de posiciones.
Redes neuronales en el trading: Integración de la teoría del caos en la previsión de series temporales (Final)
Seguimos integrando en los modelos comerciales los métodos propuestos por los autores del framework Attraos. Recordemos que este framework usa conceptos de la teoría del caos para resolver problemas de previsión de series temporales, interpretándolos como proyecciones de sistemas dinámicos caóticos multidimensionales.
Redes neuronales en el trading: Integración de la teoría del caos en la previsión de series temporales (Attraos)
El framework de Attraos integra la teoría del caos en la previsión de series temporales a largo plazo tratándolas como proyecciones de sistemas dinámicos caóticos multidimensionales. Usando la invarianza de los atractores, el modelo aplica la reconstrucción del espacio de fases y la memoria dinámica con varias resoluciones para preservar las estructuras históricas.
Características del Wizard MQL5 que debe conocer (Parte 54): Aprendizaje por refuerzo con SAC híbrido y tensores
Soft Actor Critic es un algoritmo de aprendizaje por refuerzo que analizamos en un artículo anterior, donde también presentamos Python y ONNX en esta serie como enfoques eficientes para entrenar redes. Revisamos el algoritmo con el objetivo de aprovechar los tensores, gráficos computacionales que a menudo se utilizan en Python.
Automatización de estrategias de trading en MQL5 (Parte 6): Dominar la detección de bloques de órdenes para el comercio inteligente con dinero
En este artículo, automatizamos la detección de bloques de órdenes en MQL5 utilizando análisis de acción de precios puro. Definimos bloques de órdenes, implementamos su detección e integramos la ejecución automatizada de operaciones. Por último, realizamos una prueba retrospectiva de la estrategia para evaluar su rendimiento.
Pruebas de robustez en asesores expertos
En el desarrollo de una estrategia hay muchos detalles complejos a tener en cuenta, muchos de los cuales no se destacan para los traders principiantes. Como resultado, muchos comerciantes, incluido yo mismo, hemos tenido que aprender estas lecciones a las duras penas. Este artículo se basa en mis observaciones de errores comunes que la mayoría de los traders principiantes encuentran al desarrollar estrategias en MQL5. Ofrecerá una variedad de consejos, trucos y ejemplos para ayudar a identificar la descalificación de un EA y probar la solidez de nuestros propios EA de una manera fácil de implementar. El objetivo es educar a los lectores, ayudándolos a evitar futuras estafas al comprar EA, así como a prevenir errores en el desarrollo de su propia estrategia.
Ingeniería de características con Python y MQL5 (Parte III): El ángulo del precio (2) Coordenadas polares
En este artículo, hacemos nuestro segundo intento de convertir los cambios en los niveles de precios de cualquier mercado en un cambio correspondiente en el ángulo. En esta ocasión, seleccionamos un enfoque matemáticamente más sofisticado que el que elegimos en nuestro primer intento, y los resultados obtenidos sugieren que nuestro cambio de enfoque puede haber sido la decisión correcta. Únase a nosotros hoy para debatir cómo podemos utilizar las coordenadas polares para calcular el ángulo formado por los cambios en los niveles de precios, de una manera significativa, independientemente del mercado que esté analizando.
Características del Wizard MQL5 que debe conocer (Parte 53): Market Facilitation Index (MFI)
El Market Facilitation Index (MFI) es otro indicador de Bill Williams que tiene como objetivo medir la eficiencia del movimiento de los precios en relación con el volumen. Como siempre, analizamos los distintos patrones de este indicador dentro de los límites de una clase de señales de ensamblaje del asistente y presentamos una variedad de informes de pruebas y análisis para los distintos patrones.
Automatización de estrategias de trading en MQL5 (Parte 5): Desarrollo de la estrategia Adaptive Crossover RSI Trading Suite
En este artículo, desarrollamos el sistema Adaptive Crossover RSI Trading Suite, que utiliza cruces de medias móviles de 14 y 50 períodos como señales, confirmadas por un filtro RSI de 14 períodos. El sistema incluye un filtro de días de negociación, flechas de señal con anotaciones y un panel de control en tiempo real para la supervisión. Este enfoque garantiza precisión y adaptabilidad en el comercio automatizado.
Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 5): Reglas de negociación autoadaptativas
Las mejores prácticas, que definen cómo utilizar un indicador de forma segura, no siempre son fáciles de seguir. Las condiciones de mercado tranquilas pueden producir, sorprendentemente, lecturas en el indicador que no califican como señal de negociación, lo que conlleva la pérdida de oportunidades para los operadores algorítmicos. Este artículo propondrá una posible solución a este problema, al analizar cómo construir aplicaciones de negociación capaces de adaptar sus reglas de negociación a los datos de mercado disponibles.
Redes neuronales en el trading: Modelos híbridos de secuencias de grafos (Final)
Continuamos nuestro estudio de los modelos híbridos de secuencias de grafos (GSM++) que integran las ventajas de distintas arquitecturas, proporcionando una gran precisión de análisis y una asignación eficiente de los recursos computacionales. Estos modelos revelan eficazmente patrones ocultos, reduciendo el impacto del ruido del mercado y mejorando la calidad de las previsiones.
Automatización de estrategias de trading en MQL5 (Parte 4): Creación de un sistema de recuperación de zonas multinivel
En este artículo, desarrollamos un sistema de recuperación de zonas multinivel en MQL5 que utiliza el RSI para generar señales de trading. Cada instancia de señal se añade dinámicamente a una estructura de matriz, lo que permite al sistema gestionar múltiples señales simultáneamente dentro de la lógica de recuperación de zona. Mediante este enfoque, demostramos cómo manejar de manera efectiva escenarios complejos de gestión comercial, manteniendo al mismo tiempo un diseño de código escalable y robusto.
Desarrollamos un asesor experto multidivisas (Parte 23): Ordenando la cadena de etapas de optimización automática de proyectos (II)
Hoy nuestro objetivo consiste en crear un sistema de optimización periódica automática de las estrategias comerciales utilizadas en un asesor experto final. El sistema se vuelve más complejo a medida que se desarrolla, por lo que de vez en cuando debemos examinarlo en su conjunto para detectar cuellos de botella y soluciones subóptimas.
Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrollar y probar la estrategia de negociación con LLMs (IV) - Probar la estrategia de trading
Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que debemos pensar en cómo integrar potentes LLM en nuestro trading algorítmico. Para la mayoría de las personas, resulta difícil ajustar estos potentes modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos adoptará un enfoque paso a paso para lograr este objetivo.
Redes neuronales en el trading: Modelos híbridos de secuencias de grafos (GSM++)
Los modelos híbridos de secuencias de grafos (GSM++) combinan los puntos fuertes de distintas arquitecturas para posibilitar un análisis de datos de gran precisión y optimizar los costes computacionales. Estos modelos se adaptan eficazmente a los datos dinámicos del mercado, mejorando la presentación y el procesamiento de la información financiera.