Superando las limitaciones del aprendizaje automático (Parte 1): Falta de métricas interoperables
Existe una fuerza poderosa y omnipresente que corrompe silenciosamente los esfuerzos colectivos de nuestra comunidad por desarrollar estrategias comerciales fiables que empleen la IA en cualquiera de sus formas. Este artículo establece que parte de los problemas a los que nos enfrentamos tienen su origen en la adhesión ciega a las «mejores prácticas». Al proporcionar al lector pruebas sencillas basadas en el mercado real, le explicaremos por qué debemos abstenernos de tal conducta y adoptar, en su lugar, las mejores prácticas específicas del ámbito si nuestra comunidad quiere tener alguna posibilidad de recuperar el potencial latente de la IA.
Creación de interfaces gráficas dinámicas MQL5 mediante el escalado de imágenes basado en recursos con interpolación bicúbica en gráficos de trading
En este artículo exploramos las interfaces gráficas dinámicas MQL5, utilizando interpolación bicúbica para un escalado de imágenes de alta calidad en los gráficos de trading. Detallamos opciones de posicionamiento flexibles que permiten el centrado dinámico o el anclaje en esquina con desplazamientos personalizados.
Redes neuronales en el trading: Optimización de LSTM para la predicción de series temporales multivariadas (Final)
Continuamos implementando el framework DA-CG-LSTM, que ofrece métodos innovadores para el análisis y pronóstico de series temporales. El uso de CG-LSTM y atención dual permite una detección más precisa de las dependencias de largo y corto plazo en los datos, lo cual resulta particularmente útil para trabajar con los mercados financieros.
Automatización de estrategias de trading en MQL5 (Parte 16): Ruptura del rango de medianoche con BoS (Break of Structure) basada en la acción del precio
En este artículo, automatizamos la estrategia de ruptura de rango de medianoche con ruptura de estructura en MQL5 y detallamos el código para la detección de ruptura y la ejecución de operaciones. Definimos parámetros de riesgo precisos para entradas, stops y ganancias. Se incluyen pruebas retrospectivas y optimización para el trading práctico.
Automatización de estrategias de trading en MQL5 (Parte 15): Patrón armónico Cypher de acción del precio con visualización
En este artículo, exploramos la automatización del patrón armónico Cypher en MQL5, detallando su detección y visualización en los gráficos de MetaTrader 5. Implementamos un Asesor Experto que identifica puntos de oscilación, valida patrones basados en Fibonacci y ejecuta operaciones con anotaciones gráficas claras. El artículo concluye con una guía sobre cómo realizar pruebas retrospectivas y optimizar el programa para lograr un trading efectivo.
Redes neuronales en el trading: Optimización LSTM para la previsión de series temporales multivariantes (DA-CG-LSTM)
En este artículo presentamos el algoritmo DA-CG-LSTM, que ofrece nuevos enfoques para el análisis y la previsión de series temporales. En él aprenderemos cómo los innovadores mecanismos de atención y la flexibilidad de los modelos mejoran la precisión de las predicciones.
Desarrollamos un asesor experto multidivisas (Parte 26): Informador para instrumentos comerciales
Antes de continuar con el desarrollo de asesores expertos multidivisas, vamos a intentar crear un nuevo proyecto utilizando la biblioteca desarrollada. Usando este ejemplo, descubriremos cómo organizar mejor el almacenamiento del código fuente y cómo puede ayudarnos el uso del nuevo repositorio de código de MetaQuotes.
Creación de un sistema personalizado de detección de regímenes de mercado en MQL5 (Parte 2): Asesor experto
Este artículo detalla la construcción de un Asesor Experto Adaptativo (MarketRegimeEA) utilizando el detector de régimen de la Parte 1. Cambia automáticamente las estrategias comerciales y los parámetros de riesgo para mercados con tendencia, rango o volátiles. Se incluyen optimización práctica, manejo de transiciones y un indicador de múltiples marcos de tiempo.
Redes neuronales en el trading: Actor—Director—Crítico (Final)
El framework Actor—Director—Critic supone una evolución de la arquitectura clásica de aprendizaje de agentes. El artículo presenta la experiencia práctica de su aplicación y adaptación a las condiciones de los mercados financieros.
Descifrando las estrategias de trading intradía de ruptura del rango de apertura
Las estrategias de ruptura del rango de apertura (Opening Range Breakout, ORB) se basan en la idea de que el rango de negociación inicial establecido poco después de la apertura del mercado refleja niveles de precios significativos en los que compradores y vendedores acuerdan el valor. Al identificar rupturas por encima o por debajo de un determinado rango, los operadores pueden aprovechar el impulso que suele producirse cuando la dirección del mercado se vuelve más clara. En este artículo, exploraremos tres estrategias ORB adaptadas del Grupo Concretum.
Redes neuronales en el trading: Actor—Director—Crítico (Actor—Director—Critic)
Hoy le presentamos el framework Actor-Director-Critic, que combina el aprendizaje jerárquico y la arquitectura multicomponente para crear estrategias comerciales adaptativas. En este artículo, detallaremos cómo el uso del Director para clasificar las acciones del Actor ayuda a optimizar eficazmente las decisiones comerciales y a aumentar la solidez de los modelos en el entorno de los mercados financieros.
Pruebas retrospectivas manuales simplificadas: herramientas personalizadas en MQL5 para el Probador de Estrategias
En este artículo diseñamos un conjunto de herramientas MQL5 personalizadas para facilitar las pruebas retrospectivas manuales en el Probador de Estrategias. Explicamos su diseño e implementación, centrándonos en los controles comerciales interactivos. A continuación mostramos cómo utilizarlo para probar estrategias de forma eficaz.
Automatización de estrategias de trading en MQL5 (Parte 14): Estrategia Trade Layering con técnicas estadísticas basadas en MACD y RSI
En este artículo se presenta una estrategia de trade layering que combina los indicadores MACD y RSI con métodos estadísticos para automatizar un trading dinámico en MQL5.
Se analiza la arquitectura de este enfoque en cascada, se detalla su implementación mediante segmentos clave de código y se orienta al lector sobre cómo realizar pruebas retrospectivas para optimizar el rendimiento. Finalmente, concluimos destacando el potencial de la estrategia y preparando el escenario para futuras mejoras en el trading automatizado.
Redes neuronales en el trading: Jerarquía de habilidades para el comportamiento adaptativo de agentes (Final)
El artículo analiza la aplicación práctica del framework HiSSD en tareas de trading algorítmico. Muestra cómo la jerarquía de habilidades y la arquitectura adaptativa pueden usarse para construir estrategias de negociación sostenibles.
Arbitraje estadístico mediante reversión a la media en el trading de pares: Cómo superar al mercado con matemáticas
Este artículo describe los fundamentos del arbitraje estadístico a nivel de cartera. Su objetivo es facilitar la comprensión de los principios del arbitraje estadístico a lectores sin conocimientos matemáticos profundos y proponer un marco conceptual de partida. El artículo incluye un Asesor Experto en funcionamiento, algunas notas sobre su prueba retrospectiva de un año y las respectivas configuraciones de prueba retrospectiva (archivo .ini) para la reproducción del experimento.
Redes neuronales en el trading: Jerarquía de habilidades para el comportamiento adaptativo de agentes (HiSSD)
Hoy nos familiarizaremos con el framework HiSSD, que combina el aprendizaje jerárquico y los enfoques multiagente para crear sistemas adaptativos. En este artículo, detallaremos cómo este enfoque innovador ayuda a identificar patrones ocultos en los mercados financieros y a optimizar las estrategias comerciales en un entorno descentralizado.
Automatización de estrategias de trading en MQL5 (Parte 13): Algoritmo de trading para patrón Hombro-Cabeza-Hombro
En este artículo automatizamos el patrón Hombro-Cabeza-Hombro en MQL5. Analizamos su arquitectura, implementamos un EA para detectarlo y operar, y realizamos una prueba retrospectiva de los resultados. El proceso revela un algoritmo de negociación práctico con margen para mejoras.
Redes neuronales en el trading: Detección de anomalías en el dominio de la frecuencia (Final)
Seguimos trabajando en la aplicación de los planteamientos del framework CATCH, que combina la transformada de Fourier y el mecanismo de parcheo de frecuencias para posibilitar una detección precisa de las anomalías del mercado. En este artículo, finalizaremos nuestra propia visión de los enfoques propuestos y probaremos los nuevos modelos con datos históricos reales.
Redes neuronales en el trading: Detección de anomalías en el dominio de la frecuencia (CATCH)
El framework CATCH combina la transformada de Fourier y el parcheo de frecuencias para detectar con precisión anomalías del mercado inaccesibles a los métodos tradicionales. En el presente artículo, analizaremos cómo este enfoque revela patrones ocultos en los datos financieros.
Explorando técnicas avanzadas de aprendizaje automático en la estrategia Darvas Box Breakout
La estrategia Darvas Box Breakout, creada por Nicolas Darvas, es un enfoque técnico de negociación que detecta posibles señales de compra cuando el precio de una acción sube por encima de un rango establecido, lo que sugiere un fuerte impulso alcista. En este artículo, aplicaremos este concepto estratégico como ejemplo para explorar tres técnicas avanzadas de aprendizaje automático. Entre ellas se incluyen el uso de un modelo de aprendizaje automático para generar señales en lugar de filtrar operaciones, el empleo de señales continuas en lugar de discretas y el uso de modelos entrenados en diferentes marcos temporales para confirmar las operaciones.
Automatización de estrategias de trading en MQL5 (Parte 12): Implementación de la estrategia Mitigation Order Blocks (MOB)
En este artículo creamos un sistema de trading en MQL5 que se encarga de detectar de forma automática los "order blocks", un concepto utilizado en el método Smart Money. Describimos las reglas de la estrategia, implementamos la lógica en MQL5 e integramos la gestión de riesgos para una ejecución eficaz de las operaciones. Por último, realizamos pruebas retrospectivas del sistema para evaluar su rendimiento y perfeccionarlo con el fin de obtener resultados óptimos.
Ondas triangulares y de sierra: herramientas para el tráder
Uno de los métodos de análisis técnico es el análisis de ondas. En este artículo nos ocuparemos de las ondas triangulares y de sierra. Usando estas ondas como base, podemos construir varios indicadores técnicos, con la ayuda de los cuales se puede analizar el movimiento de los precios en el mercado.
Redes neuronales en el trading: Detección adaptativa de anomalías del mercado (Final)
Seguimos construyendo los algoritmos que sustentan el framework DADA, una herramienta avanzada para detectar anomalías en las series temporales. Este enfoque permite distinguir eficazmente las fluctuaciones aleatorias de los valores atípicos significativos. A diferencia de los métodos clásicos, el DADA se adapta dinámicamente a los distintos tipos de datos, seleccionando el nivel de compresión óptimo en cada caso.
Operar con el Calendario Económico MQL5 (Parte 6): Automatizar la entrada de operaciones con análisis de noticias y temporizadores de cuenta regresiva
En este artículo, implementamos la entrada automática de operaciones utilizando el Calendario Económico MQL5, aplicando filtros definidos por el usuario y desfases temporales para identificar eventos noticiosos que cumplan los requisitos. Comparamos los pronósticos y los valores anteriores para determinar si abrir una operación de COMPRA o VENTA. Los temporizadores de cuenta regresiva dinámicos muestran el tiempo restante hasta la publicación de las noticias y se reinician automáticamente después de una operación.
Desarrollamos un asesor experto multidivisas (Parte 25): Conectamos una nueva estrategia (II)
En este artículo seguiremos conectando la nueva estrategia con el sistema de optimización automática que hemos creado. Asimismo, veremos qué cambios habrá que introducir en el EA de creación del proyecto de optimización y en los EAs de la segunda y tercera fase.
Introducción a MQL5 (Parte 13): Guía para principiantes sobre cómo crear indicadores personalizados (II)
Este artículo le guía a través del proceso de creación de un indicador Heikin Ashi personalizado desde cero y muestra cómo integrar indicadores personalizados en un EA. Abarca cálculos de indicadores, lógica de ejecución de operaciones y técnicas de gestión de riesgos para mejorar las estrategias de negociación automatizadas.
Introducción a MQL5 (Parte 11): Guía de trabajo con indicadores incorporados en MQL5 para principiantes (II)
Descubra cómo desarrollar un Asesor Experto (Expert Advisor, EA) en MQL5 utilizando múltiples indicadores como el RSI, la media móvil y el oscilador estocástico para detectar divergencias alcistas y bajistas ocultas. En este artículo aprenda a implementar una gestión de riesgos eficaz y a automatizar las operaciones con ejemplos detallados y código fuente totalmente comentado con fines educativos.
Redes neuronales en el trading: Detección adaptativa de anomalías del mercado (DADA)
Hoy vamos a familiarizarnos con el framework DADA, un método innovador para detectar anomalías en las series temporales. Este ayuda a distinguir las fluctuaciones aleatorias de las presuntas anomalías. A diferencia de los métodos tradicionales, el DADA puede adaptarse de forma flexible a distintos datos. En lugar de un nivel de compresión fijo, usa múltiples opciones y elige la más adecuada para cada caso.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 15): Introducción a la teoría de los cuartos (I) - Dibujando la teoría de cuartos
Los puntos de soporte y resistencia son niveles críticos que indican posibles reversiones y continuaciones de la tendencia. Aunque identificar estos niveles puede resultar complicado, una vez que los localices, estarás bien preparado para navegar por el mercado. Si necesitas más ayuda, échale un vistazo a la herramienta Quarters Drawer que aparece en este artículo, te ayudará a identificar los niveles de soporte y resistencia principales y secundarios.
Características del Wizard MQL5 que debe conocer (Parte 56): Fractales de Bill Williams
Los fractales de Bill Williams son un indicador potente que es fácil pasar por alto cuando se ve por primera vez en un gráfico de precios. Parece demasiado recargado y probablemente no lo suficientemente incisivo. Nuestro objetivo es desvelar este indicador examinando lo que sus diversos patrones podrían lograr cuando se analizan con pruebas de avance en todos los casos, con un asesor experto creado por un asistente.
Desarrollamos un asesor experto multidivisas (Parte 24): Añadimos una nueva estrategia (I)
En este artículo, veremos cómo conectar una nueva estrategia al sistema de optimización automática que hemos creado. Veamos qué tipo de EA necesitamos crear y si será posible hacerlo sin cambiar los archivos de la librería o minimizando los cambios necesarios.
Análisis de múltiples símbolos con Python y MQL5 (Parte 3): Tipos de cambio triangulares
Los operadores suelen enfrentarse a pérdidas por señales falsas, mientras que esperar a la confirmación puede llevar a perder oportunidades. Este artículo presenta una estrategia comercial triangular que utiliza el precio de la plata en dólares (XAGUSD) y euros (XAGEUR), junto con el tipo de cambio EURUSD, para filtrar el ruido. Al aprovechar las relaciones entre mercados, los operadores pueden descubrir el sentimiento oculto y perfeccionar sus entradas en tiempo real.
Automatización de estrategias de trading en MQL5 (Parte 11): Desarrollo de un sistema de negociación de cuadrícula multinivel
En este artículo, desarrollamos un sistema EA de trading de cuadrícula multinivel utilizando MQL5, centrándonos en la arquitectura y el diseño del algoritmo que hay detrás de las estrategias de trading de cuadrícula. Exploramos la implementación de una lógica de red multicapa y técnicas de gestión de riesgos para hacer frente a las condiciones variables del mercado. Por último, ofrecemos explicaciones detalladas y consejos prácticos para guiarle en la creación, prueba y perfeccionamiento del sistema de negociación automatizado.
Automatización de estrategias de trading en MQL5 (Parte 10): Desarrollo de la estrategia Trend Flat Momentum
En este artículo, desarrollamos un Asesor Experto en MQL5 para la estrategia Trend Flat Momentum. Combinamos un cruce de dos medias móviles con filtros de impulso RSI y CCI para generar señales de trading. También cubrimos las pruebas retrospectivas y las posibles mejoras para el rendimiento en el mundo real.
Características del Wizard MQL5 que debe conocer (Parte 55): SAC con Prioritized Experience Replay (PER)
Los búferes de reproducción en el aprendizaje por refuerzo son especialmente importantes con algoritmos fuera de política como DQN o SAC. Esto pone entonces el foco en el proceso de muestreo de este búfer de memoria. Mientras que las opciones predeterminadas con SAC, por ejemplo, utilizan una selección aleatoria de este búfer, los búferes de reproducción de experiencia priorizada ajustan esto mediante un muestreo del búfer basado en una puntuación TD. Repasamos la importancia del aprendizaje por refuerzo y, como siempre, examinamos solo esta hipótesis (no la validación cruzada) en un asesor experto creado por un asistente.
Redes neuronales en el trading: Clusterización doble de series temporales (Final)
Continuamos implementando los enfoques propuestos por los autores del framework DUET, que ofrece un enfoque innovador para el análisis de series temporales, combinando la clusterización temporal y de canales para identificar patrones ocultos en los datos analizados.
Automatización de estrategias de trading en MQL5 (Parte 9): Creación de un asesor experto para la estrategia de ruptura asiática
En este artículo, creamos un Asesor Experto en MQL5 para la estrategia de ruptura asiática calculando los máximos y mínimos de la sesión y aplicando un filtro de tendencia con una media móvil. Implementamos estilos dinámicos para objetos, entradas de tiempo definidas por el usuario y una sólida gestión de riesgos. Por último, mostramos técnicas de pruebas retrospectivas y optimización para perfeccionar el sistema.
Automatización de estrategias de trading en MQL5 (Parte 8): Creación de un Asesor Experto con patrones armónicos Butterfly
En este artículo, creamos un Asesor Experto MQL5 para detectar patrones armónicos Butterfly. Identificamos los puntos pivote y validamos los niveles de Fibonacci para confirmar el patrón. A continuación, visualizamos el patrón en el gráfico y ejecutamos automáticamente las operaciones cuando se confirman.
Redes neuronales en el trading: Clusterización doble de series temporales (DUET)
El framework DUET ofrece un enfoque innovador del análisis de series temporales, combinando la clusterización temporal y por canales para revelar patrones ocultos en los datos analizados. Esto permite a los modelos adaptarse a los cambios a lo largo del tiempo y mejorar la calidad de las previsiones eliminando el ruido.
Automatización de estrategias de trading en MQL5 (Parte 7): Creación de un EA para el comercio en cuadrícula con escalado dinámico de lotes
En este artículo, creamos un asesor experto de trading con cuadrículas en MQL5 que utiliza el escalado dinámico de lotes. Cubrimos el diseño de la estrategia, la implementación del código y el proceso de backtesting. Por último, compartimos conocimientos clave y mejores prácticas para optimizar el sistema de comercio automatizado.