Analyse der Auswirkungen des Wetters auf die Währungen der Agrarländer mit Python
Welcher Zusammenhang besteht zwischen Wetter und Devisen? In der klassischen Wirtschaftstheorie wurde der Einfluss von Faktoren wie dem Wetter auf das Marktverhalten lange Zeit ignoriert. Aber alles hat sich geändert. Versuchen wir, Zusammenhänge zwischen den Witterungsbedingungen und der Stellung der Agrarwährungen auf dem Markt zu finden.
Implementierung von praktischen Modulen aus anderen Sprachen in MQL5 (Teil 01): Aufbau der SQLite3-Bibliothek, inspiriert von Python
Das Modul sqlite3 in Python bietet einen unkomplizierten Ansatz für die Arbeit mit SQLite-Datenbanken, es ist schnell und bequem. In diesem Artikel werden wir ein ähnliches Modul auf den integrierten MQL5-Funktionen für die Arbeit mit Datenbanken aufbauen, um die Arbeit mit SQLite3-Datenbanken in MQL5 wie in Python zu erleichtern.
Implementierung von praktischen Modulen aus anderen Sprachen in MQL5 (Teil 03): Zeitplan-Modul von Python, das OnTimer-Ereignis auf Steroiden
Das Schedule-Modul in Python bietet eine einfache Möglichkeit, wiederkehrende Aufgaben zu planen. Während MQL5 kein eingebautes Äquivalent hat, werden wir in diesem Artikel eine ähnliche Bibliothek implementieren, um die Einrichtung von zeitgesteuerten Ereignissen in MetaTrader 5 zu erleichtern.
Entwicklung eines Replay-Systems (Teil 78): Neuer Chart Trade (V)
In diesem Artikel werden wir uns ansehen, wie ein Teil des Empfängercodes implementiert wird. Hier werden wir einen Expert Advisor implementieren, um zu testen und zu lernen, wie die Interaktion mit dem Protokoll funktioniert. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
Neuronale Netze im Handel: Ein Ensemble von Agenten mit Aufmerksamkeitsmechanismen (letzter Teil)
Im vorangegangenen Artikel haben wir das adaptive System MASAAT der Multi-Agenten vorgestellt, das ein Ensemble von Agenten verwendet, um eine Kreuzanalyse von multimodalen Zeitreihen auf verschiedenen Datenskalen durchzuführen. Heute werden wir die Ansätze dieses Rahmens in MQL5 weiter umsetzen und diese Arbeit zu einem logischen Abschluss bringen.
Neuronale Netze im Handel: Ein hybrider Handelsrahmen mit prädiktiver Kodierung (StockFormer)
In diesem Artikel wird das hybride Handelssystem StockFormer vorgestellt, das die Algorithmen von Predictive Coding und dem Reinforcement Learning (RL) kombiniert. Das Framework verwendet 3 Transformer-Zweige mit einem integrierten Diversified Multi-Head Attention (DMH-Attn)-Mechanismus, der das ursprüngliche Aufmerksamkeitsmodul mit einem mehrköpfigen Block des Vorwärtsdurchlaufs verbessert und es ermöglicht, diverse Zeitreihenmuster über verschiedene Teilräume hinweg zu erfassen.
Algorithmus für zyklische Parthenogenese (CPA)
Der Artikel befasst sich mit einem neuen Populationsoptimierungsalgorithmus – dem Cyclic Parthenogenesis Algorithm (CPA), der von der einzigartigen Fortpflanzungsstrategie von Blattläusen inspiriert ist. Der Algorithmus kombiniert zwei Fortpflanzungsmechanismen – Parthenogenese und sexuelle Fortpflanzung – und nutzt auch die koloniale Struktur der Population mit der Möglichkeit der Migration zwischen Kolonien. Die wichtigsten Merkmale des Algorithmus sind der adaptive Wechsel zwischen verschiedenen Fortpflanzungsstrategien und ein System des Informationsaustauschs zwischen den Kolonien durch den Flugmechanismus.
Analyse des Binärcodes der Börsenkurse (Teil I): Ein neuer Blick auf die technische Analyse
In diesem Artikel wird ein innovativer Ansatz für die technische Analyse vorgestellt, der auf der Umwandlung von Kursbewegungen in Binärcodes beruht. Der Autor zeigt, wie verschiedene Aspekte des Marktverhaltens – von einfachen Preisbewegungen bis hin zu komplexen Mustern – in einer Folge von Nullen und Einsen kodiert werden können.
Der MQL5 Standard Library Explorer (Teil 1): Einführung in CTrade, CiMA, und CiATR
Die MQL5-Standardbibliothek spielt eine wichtige Rolle bei der Entwicklung von Handelsalgorithmen für MetaTrader 5. In dieser Diskussionsreihe wollen wir seine Anwendung beherrschen, um die Erstellung effizienter Handelswerkzeuge für MetaTrader 5 zu vereinfachen. Zu diesen Tools gehören nutzerdefinierte Expert Advisors, Indikatoren und andere Hilfsmittel. Wir beginnen heute mit der Entwicklung eines trendfolgenden Expert Advisors unter Verwendung der Klassen CTrade, CiMA und CiATR. Dies ist ein besonders wichtiges Thema für alle – egal, ob Sie Anfänger oder erfahrener Entwickler sind. Nehmen Sie an dieser Diskussion teil und erfahren Sie mehr.
Von der Grundstufe bis zur Mittelstufe: Template und Typename (I)
In diesem Artikel beginnen wir mit der Betrachtung eines der Konzepte, das viele Anfänger vermeiden. Das hängt damit zusammen, dass Templates kein einfaches Thema sind, da viele das Grundprinzip, das den Templates zugrunde liegt, nicht verstehen: die Überladung von Funktionen und Prozeduren.
Optimierung mit der bakteriellen Chemotaxis (BCO)
Der Artikel stellt die ursprüngliche Version des Algorithmus zur Optimierung der bakteriellen Chemotaxis (BCO) und seine modifizierte Version vor. Wir werden uns alle Unterschiede genauer ansehen, mit besonderem Augenmerk auf die neue Version von BCOm, die den Mechanismus der bakteriellen Bewegung vereinfacht, die Abhängigkeit von der Positionsgeschichte verringert und einfachere mathematische Verfahren verwendet als die rechenintensive Originalversion. Wir werden auch die Tests durchführen und die Ergebnisse zusammenfassen.
Von der Grundstufe bis zur Mittelstufe: Fließkommazahlen
Dieser Artikel ist eine kurze Einführung in das Konzept der Fließkommazahlen. Da dieser Text sehr komplex ist, lesen Sie ihn bitte aufmerksam und sorgfältig. Erwarten Sie nicht, dass Sie das Fließkommasystem schnell beherrschen. Das wird erst mit der Zeit klar, wenn man Erfahrung damit hat. Aber dieser Artikel wird Ihnen helfen zu verstehen, warum Ihre Anwendung manchmal andere Ergebnisse liefert, als Sie erwarten.
MQL5-Handelswerkzeuge (Teil 4): Verbesserung des Dashboards des Multi-Timeframe-Scanners mit dynamischer Positionierung und Umschaltfunktionen
In diesem Artikel erweitern wir das MQL5 Multi-Timeframe Scanner Dashboard mit beweglichen und umschaltbaren Funktionen. Wir ermöglichen das Verschieben des Dashboards und eine Option zum Minimieren/Maximieren für eine bessere Bildschirmnutzung. Wir implementieren und testen diese Verbesserungen für eine verbesserte Handelsflexibilität.
MQL5-Handelswerkzeuge (Teil 6): Dynamisches holografisches Dashboard mit Impulsanimationen und Steuerelementen
In diesem Artikel erstellen wir ein dynamisches holografisches Dashboard in MQL5 zur Überwachung von Symbolen und Zeitrahmen mit RSI, Volatilitätswarnungen und Sortieroptionen. Wir fügen eine pulsierende Animationen, interaktive Schaltflächen und holografische Effekte hinzu, um das Tool visuell ansprechend und reaktionsschnell zu gestalten.
Neuronale Netze im Handel: Ein hybrider Handelsrahmen mit prädiktiver Kodierung (letzter Teil)
Wir setzen unsere Untersuchung des hybriden Handelssystems StockFormer fort, das prädiktive Kodierungs- und Verstärkungslernalgorithmen für die Analyse von Finanzzeitreihen kombiniert. Das System basiert auf drei Transformer-Zweigen mit einem diversifizierten Mehrkopf-Aufmerksamkeitsmechanismus (DMH-Attn), der die Erfassung komplexer Muster und Abhängigkeiten zwischen Assets ermöglicht. Zuvor haben wir uns mit den theoretischen Aspekten des Frameworks vertraut gemacht und die DMH-Attn-Mechanismus implementiert. Heute werden wir über die Modellarchitektur und das Training sprechen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 76): Verwendung von Mustern des Awesome Oszillators und der Envelope-Kanäle mit überwachtem Lernen
Wir knüpfen an unseren letzten Artikel an, in dem wir das Indikatorpaar des Awesome Oszillators und die Envelope-Kanäle vorstellten, indem wir uns ansehen, wie dieses Paar durch überwachtes Lernen verbessert werden kann. Der Awesome Oszillator und die Envelope-Kanäle sind eine Mischung aus Trendspotting und Unterstützung/Widerstand, die sich gegenseitig ergänzen. Unser überwachter Lernansatz ist ein CNN, der das Punktprodukt-Kernel mit Cross-Time-Attention einsetzt, um seine Kernel und Kanäle zu dimensionieren. Wie üblich erfolgt dies in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten zur Zusammenstellung eines Expert Advisors arbeitet.
Entwicklung des Price Action Analysis Toolkit (Teil 39): Automatisierung der BOS- und ChoCH-Erkennung in MQL5
Dieser Artikel stellt das Fractal Reaction System vor, ein kompaktes MQL5-System, das fraktale Pivots in umsetzbare Marktstruktursignale umwandelt. Der EA verwendet eine geschlossene Balkenlogik, um ein erneutes Zeichnen zu vermeiden, erkennt Change-of-Character-Warnungen (ChoCH) und bestätigt Breaks-of-Structure (BOS), zeichnet persistente Chartobjekte und protokolliert/meldet jedes bestätigte Ereignis (Desktop, Mobile und Sound). Lesen Sie weiter, um den Algorithmusentwurf, Implementierungshinweise, Testergebnisse und den vollständigen EA-Code zu erfahren, damit Sie den Detektor selbst kompilieren, testen und einsetzen können.
Entwicklung eines volatilitätsbasierten Ausbruchssystems
Das auf der Volatilität basierende Breakout-System identifiziert Marktbereiche und handelt dann, wenn der Preis über oder unter diese Niveaus bricht, gefiltert durch Volatilitätsmaße wie ATR. Dieser Ansatz hilft, starke Richtungsbewegungen zu erfassen.
Marktsimulation (Teil 02): Kreuzaufträge (II)
Anders als im vorherigen Artikel werden wir hier die Auswahlmöglichkeit mit einem Expert Advisor testen. Dies ist zwar noch keine endgültige Lösung, aber für den Moment reicht es aus. Mit Hilfe dieses Artikels werden Sie verstehen, wie Sie eine der möglichen Lösungen umsetzen können.
Neuronale Netze im Handel: Modelle mit Wavelet-Transformation und Multitasking-Aufmerksamkeit
Wir laden Sie ein, einen Rahmen zu erkunden, der Wavelet-Transformationen und ein Multitasking-Selbstaufmerksamkeitsmodell kombiniert, um die Reaktionsfähigkeit und Genauigkeit von Prognosen unter volatilen Marktbedingungen zu verbessern. Die Wavelet-Transformation ermöglicht die Zerlegung der Renditen von Vermögenswerten in hohe und niedrige Frequenzen, wodurch langfristige Markttrends und kurzfristige Schwankungen sorgfältig erfasst werden.
Funktionen zur Aktivierung von Neuronen während des Trainings: Der Schlüssel zur schnellen Konvergenz?
In diesem Artikel wird die Interaktion verschiedener Aktivierungsfunktionen mit Optimierungsalgorithmen im Rahmen des Trainings neuronaler Netze untersucht. Besonderes Augenmerk wird auf den Vergleich zwischen dem klassischen ADAM und seiner Populationsversion gelegt, wenn mit einer breiten Palette von Aktivierungsfunktionen gearbeitet wird, einschließlich der oszillierenden ACON- und Snake-Funktionen. Durch die Verwendung einer minimalistischen MLP-Architektur (1-1-1) und eines einzigen Trainingsbeispiels wird der Einfluss der Aktivierungsfunktionen auf die Optimierung von anderen Faktoren getrennt. Der Artikel schlägt einen Ansatz zur Verwaltung von Netzwerkgewichten durch die Grenzen von Aktivierungsfunktionen und einen Gewichtsreflexionsmechanismus vor, der es ermöglicht, Probleme mit Sättigung und Stagnation beim Training zu vermeiden.
MQL5-Handelswerkzeuge (Teil 8): Verbessertes informatives Dashboard mit verschiebbaren und minimierbaren Funktionen
In diesem Artikel entwickeln wir ein erweitertes Informations-Dashboard, das den vorigen Teil durch die Hinzufügung von verschiebbaren und minimierbaren Funktionen für eine verbesserte Nutzerinteraktion aufwertet, während die Echtzeitüberwachung von Multi-Symbol-Positionen und Kontometrien beibehalten wird.
Einführung in MQL5 (Teil 20): Einführung in „Harmonic Patterns“
In diesem Artikel befassen wir uns mit den Grundlagen der harmonischen Muster, ihren Strukturen und ihrer Anwendung im Handel. Sie lernen etwas über Fibonacci-Retracements, Extensions und wie man die Erkennung harmonischer Muster in MQL5 implementiert, was die Grundlage für den Aufbau fortgeschrittener Handelswerkzeuge und Expert Advisors bildet.
Automatisieren von Handelsstrategien in MQL5 (Teil 28): Erstellen eines Price Action Bat Harmonic Patterns mit visuellem Feedback
In diesem Artikel entwickeln wir ein Bat-Pattern-System in MQL5, das Auf- und Abwärtsmuster von Bat-Harmonic unter Verwendung von Umkehrpunkten und Fibonacci-Verhältnissen identifiziert und Handelsgeschäfte mit präzisen Einstiegs-, Stop-Loss- und Take-Profit-Levels auslöst, ergänzt durch visuelles Feedback durch Chart-Objekte
Die Grenzen des maschinellen Lernens überwinden (Teil 3): Eine neue Perspektive auf irreduzible Fehler
Dieser Artikel wirft einen neuen Blick auf eine verborgene, geometrische Fehlerquelle, die im Stillen jede Vorhersage Ihrer Modelle beeinflusst. Indem wir die Messung und Anwendung von Prognosen des maschinellen Lernens im Handel überdenken, zeigen wir, wie diese übersehene Perspektive schärfere Entscheidungen, höhere Renditen und einen intelligenteren Umgang mit Modellen, die wir bereits zu verstehen glaubten, ermöglichen kann.
Entwicklung eines individuellen Indikators für die Marktstimmung
In diesem Artikel entwickeln wir einen nutzerdefinierten Indikator für die Marktstimmung, um die Bedingungen in aufwärts, abwärts, mehr und weniger Risiko oder neutral zu klassifizieren. Durch die Verwendung von mehreren Zeitrahmen kann der Indikator Händlern eine klarere Perspektive der allgemeinen Markttendenz und der kurzfristigen Bestätigungen bieten.
Entwicklung eines Replay-Systems (Teil 77): Neuer Chart Trade (IV)
In diesem Artikel werden wir einige der Maßnahmen und Vorsichtsmaßnahmen behandeln, die bei der Erstellung eines Kommunikationsprotokolls zu beachten sind. Dies sind recht einfache und unkomplizierte Dinge, sodass wir in diesem Artikel nicht zu sehr ins Detail gehen werden. Aber um zu verstehen, was passieren wird, müssen Sie den Inhalt des Artikels verstehen.
Neuro-symbolische Systeme im algorithmischen Handel: Kombination von symbolischen Regeln und neuronalen Netzen
Der Artikel beschreibt die Erfahrungen bei der Entwicklung eines hybriden Handelssystems, das die klassische technische Analyse mit neuronalen Netzen kombiniert. Der Autor liefert eine detaillierte Analyse der Systemarchitektur, von der grundlegenden Musteranalyse und der Struktur des neuronalen Netzes bis hin zu den Mechanismen, die den Handelsentscheidungen zugrunde liegen, und stellt echten Code und praktische Beobachtungen vor.
Statistische Arbitrage durch kointegrierte Aktien (Teil 4): Modellaktualisierung in Echtzeit
Dieser Artikel beschreibt eine einfache, aber umfassende statistische Arbitrage-Pipeline für den Handel mit einem Korb von kointegrierten Aktien. Es enthält ein voll funktionsfähiges Python-Skript zum Herunterladen und Speichern von Daten, Korrelations-, Kointegrations- und Stationaritätstests sowie eine Beispielimplementierung des Metatrader 5 Service zur Aktualisierung der Datenbank und des entsprechenden Expert Advisors. Einige Designentscheidungen werden hier zu Referenzzwecken und als Hilfe bei der Reproduktion des Experiments dokumentiert.
Vom Neuling zum Experten: Detaillierte Handelsberichte mit Reporting EA beherrschen
In diesem Artikel befassen wir uns mit der Verbesserung der Details von Handelsberichten und der Übermittlung des endgültigen Dokuments per E-Mail im PDF-Format. Dies stellt eine Weiterentwicklung unserer bisherigen Arbeit dar, da wir weiterhin erforschen, wie wir die Leistungsfähigkeit von MQL5 und Python nutzen können, um Handelsberichte in den bequemsten und professionellsten Formaten zu erstellen und zu planen. Nehmen Sie an dieser Diskussion teil und erfahren Sie mehr über die Optimierung der Erstellung von Handelsberichten innerhalb des MQL5-Ökosystems.
MetaTrader trifft auf Google Sheets mit Pythonanywhere: Ein Leitfaden für einen sicheren Datenfluss
Dieser Artikel zeigt einen sicheren Weg, um MetaTrader-Daten in Google Sheets zu exportieren. Google Sheet ist die wertvollste Lösung, da es cloudbasiert ist und die dort gespeicherten Daten jederzeit und von überall abgerufen werden können. So können Händler jederzeit und von jedem Ort aus auf die in Google Sheet exportierten Handels- und zugehörigen Daten zugreifen und weitere Analysen für den zukünftigen Handel durchführen.
Entwicklung des Price Action Analysis Toolkit (Teil 38): Tick Buffer VWAP und Short-Window Imbalance Engine
In Teil 38 bauen wir ein produktionsreifes MT5-Überwachungspanel, das rohe Ticks in umsetzbare Signale umwandelt. Der EA puffert Tick-Daten, um VWAP auf Tick-Ebene, eine Ungleichgewichtsmetrik (Flow) in einen kurzzeitigen Fenster und ATR-basierte Positionsgrößen zu berechnen. Anschließend werden Spread, ATR und Flow mit flimmerarmen Balken visualisiert. Das System berechnet eine vorgeschlagene Losgröße und einen 1R-Stopp und gibt konfigurierbare Warnungen bei engen Spreads, starkem Flow und Randbedingungen aus. Der automatische Handel ist absichtlich deaktiviert; der Schwerpunkt liegt weiterhin auf einer robusten Signalgenerierung und einer sauberen Nutzererfahrung.
Beherrschung von Protokollaufzeichnungen (Teil 10): Vermeidung von Log Replay durch Implementierung einer Unterdrückung
Wir haben ein System zur Unterdrückung von Protokollen in der Logify-Bibliothek erstellt. Es wird beschrieben, wie die Klasse CLogifySuppression das Konsolenrauschen durch Anwendung konfigurierbarer Regeln reduziert, um sich wiederholende oder irrelevante Meldungen zu vermeiden. Wir behandeln auch das externe Konfigurations-Framework, Validierungsmechanismen und umfassende Tests, um Robustheit und Flexibilität bei der Protokollerfassung während der Bot- oder Indikatorentwicklung zu gewährleisten.
Automatisieren von Handelsstrategien in MQL5 (Teil 29): Erstellung eines Preisaktionssystems mit dem harmonischen Muster von Gartley
In diesem Artikel entwickeln wir ein System des Gartley-Musters in MQL5, das harmonische Auf- und Abwärtsmuster von Gartley mit Hilfe von Umkehrpunkten und Fibonacci-Verhältnissen identifiziert und Handelsgeschäfte mit präzisen Einstiegs-, Stop-Loss- und Take-Profit-Levels ausführt. Wir verbessern den Einblick des Händlers mit visuellem Feedback durch Chart-Objekte wie Dreiecke, Trendlinien und Beschriftungen, um die XABCD-Musterstruktur klar darzustellen.
Big Bang – Big Crunch (BBBC) Algorithmus
Der Artikel stellt die Methode Big Bang – Big Crunch vor, die aus zwei Schlüsselphasen besteht: zyklische Erzeugung von Zufallspunkten und deren Komprimierung zur optimalen Lösung. Dieser Ansatz kombiniert Erkundung und Verfeinerung und ermöglicht es uns, schrittweise bessere Lösungen zu finden und neue Optimierungsmöglichkeiten zu erschließen.
CRUD-Operationen in Firebase mit MQL
Dieser Artikel bietet eine Schritt-für-Schritt-Anleitung zur Beherrschung von CRUD-Operationen (Create, Read, Update, Delete) in Firebase, wobei der Schwerpunkt auf der Echtzeitdatenbank und dem Firestore liegt. Entdecken Sie, wie Sie die SDK-Methoden von Firebase nutzen können, um Daten in Web- und Mobilanwendungen effizient zu verwalten, vom Hinzufügen neuer Datensätze bis zum Abfragen, Ändern und Löschen von Einträgen. Lernen Sie praktische Code-Beispiele und Best Practices für die Strukturierung und Verarbeitung von Daten in Echtzeit kennen, die es Entwicklern ermöglichen, dynamische, skalierbare Anwendungen mit der flexiblen NoSQL-Architektur von Firebase zu erstellen.
Chart-Synchronisation für eine einfachere technische Analyse
Die Chart-Synchronisierung für eine einfachere technische Analyse ist ein Tool, das sicherstellt, dass alle Chart-Zeitrahmen für ein einzelnes Symbol konsistente grafische Objekte wie Trendlinien, Rechtecke oder Indikatoren über verschiedene Zeitrahmen hinweg anzeigen. Aktionen wie Schwenken, Zoomen oder Symbolwechsel werden in allen synchronisierten Charts gespiegelt, sodass Händler nahtlos denselben Preisaktionskontext in mehreren Zeitrahmen anzeigen und vergleichen können.
Automatisieren von Handelsstrategien in MQL5 (Teil 31): Erstellung eines Price Action 3 Drives Harmonic Pattern Systems
In diesem Artikel entwickeln wir ein 3 Drives Pattern System in MQL5, das steigende und fallende harmonische Muster der 3 Drives mit Umkehrpunkten und Fibonacci-Verhältnissen identifiziert und Handelsgeschäfte mit anpassbaren Einstiegs-, Stop-Loss- und Take-Profit-Levels basierend auf vom Nutzer ausgewählten Optionen ausführt. Wir verbessern den Einblick des Händlers mit visuellem Feedback durch Chart-Objekte.
Dynamic Mode Decomposition angewandt auf univariate Zeitreihen in MQL5
Die Dynamic Mode Decomposition (DMD) ist eine Technik, die in der Regel auf hochdimensionale Datensätze angewendet wird. In diesem Artikel demonstrieren wir die Anwendung der DMD auf univariate Zeitreihen und zeigen, dass sie in der Lage ist, sowohl eine Reihe zu charakterisieren als auch Prognosen zu erstellen. Dabei werden wir die in MQL5 eingebaute Implementierung der Dynamic Mode Decomposition untersuchen und dabei besonderes Augenmerk auf die neue Matrixmethode DynamicModeDecomposition() legen.
Aufbau eines professionellen Handelssystems mit Heikin Ashi (Teil 1): Entwickeln eines nutzerdefinierten Indikators
Dieser Artikel ist der erste Teil einer zweiteiligen Serie, die praktische Fähigkeiten und Best Practices für das Schreiben von nutzerdefinierten Indikatoren in MQL5 vermitteln soll. Anhand des Heikin Ashi als Arbeitsbeispiel untersucht der Artikel die Theorie hinter den Heikin Ashi-Charts, erklärt, wie Heikin Ashi-Kerzen berechnet werden, und demonstriert ihre Anwendung in der technischen Analyse. Das Herzstück ist eine schrittweise Anleitung zur Entwicklung eines voll funktionsfähigen Heikin Ashi-Indikators von Grund auf, mit klaren Erklärungen, die dem Leser helfen zu verstehen, was zu programmieren ist und warum. Dieses Grundwissen bildet die Grundlage für den zweiten Teil, in dem wir einen Expert Advisor erstellen werden, der auf der Grundlage der Heikin Ashi-Logik handelt.