
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 15): Einführung in die Quarters-Theorie (I) - Quarters Drawer Script
Unterstützungs- und Widerstandspunkte sind kritische Niveaus, die potenzielle Trendumkehr und -fortsetzungen signalisieren. Obwohl es schwierig sein kann, diese Niveaus zu identifizieren, sind Sie, wenn Sie sie einmal gefunden haben, gut vorbereitet, um sich auf dem Markt zurechtzufinden. Als weitere Hilfe können Sie das in diesem Artikel vorgestellte Tool „Quarters Drawer“ verwenden, mit dem Sie sowohl primäre als auch sekundäre Unterstützungs- und Widerstandsniveaus identifizieren können.

Automatisieren von Handelsstrategien in MQL5 (Teil 16): Midnight Range Breakout mit der Preisaktion Break of Structure (BoS)
In diesem Artikel automatisieren wir die Midnight Range Breakout mit Break of Structure Strategie in MQL5, indem wir den Code für die Breakout-Erkennung und die Handelsausführung detailliert beschreiben. Wir definieren präzise Risikoparameter für Einstieg, Stopp und Gewinn. Backtests und Optimierung sind für den praktischen Handel enthalten.

Von der Grundstufe bis zur Mittelstufe: Arrays und Zeichenketten (III)
Dieser Artikel behandelt zwei Aspekte. Erstens, wie die Standardbibliothek binäre Werte in andere Darstellungen wie oktal, dezimal und hexadezimal konvertieren kann. Zweitens werden wir darüber sprechen, wie wir die Breite unseres Passworts auf der Grundlage der geheimen Phrase bestimmen können, indem wir das bereits erworbene Wissen nutzen.

Verschaffen Sie sich einen Vorteil auf jedem Markt (Teil III): Visa-Ausgabenindex
In der Welt der Big Data gibt es Millionen von alternativen Datensätzen, die das Potenzial haben, unsere Handelsstrategien zu verbessern. In dieser Artikelserie werden wir Ihnen helfen, die informativsten öffentlichen Datensätze zu finden.

Neuronale Netze im Handel: Kontrollierte Segmentierung (letzter Teil)
Wir setzen die im vorigen Artikel begonnene Arbeit am Aufbau des RefMask3D-Frameworks mit MQL5 fort. Dieser Rahmen wurde entwickelt, um multimodale Interaktion und Merkmalsanalyse in einer Punktwolke umfassend zu untersuchen, gefolgt von der Identifizierung des Zielobjekts auf der Grundlage einer in natürlicher Sprache gegebenen Beschreibung.

Entwicklung eines Replay Systems (Teil 46): Chart Trade Projekt (V)
Sind Sie es leid, Zeit mit der Suche nach genau der Datei zu verschwenden, die Ihre Anwendung zum Funktionieren braucht? Wie wäre es, alles in die ausführbare Datei aufzunehmen? Auf diese Weise müssen Sie nicht nach den Dingen suchen. Ich weiß, dass viele Menschen diese Form der Verteilung und Speicherung nutzen, aber es gibt einen viel geeigneteren Weg. Zumindest was die Verteilung von ausführbaren Dateien und deren Speicherung betrifft. Die hier vorgestellte Methode kann sehr nützlich sein, da Sie den MetaTrader 5 selbst als hervorragenden Assistenten verwenden können, ebenso wie MQL5. Außerdem ist es nicht so schwer zu verstehen.

Entwicklung eines Replay-Systems (Teil 60): Abspielen des Dienstes (I)
Wir haben lange Zeit nur an den Indikatoren gearbeitet, aber jetzt ist es an der Zeit, den Dienst wieder zum Laufen zu bringen und zu sehen, wie das Chart auf der Grundlage der bereitgestellten Daten erstellt wird. Da die ganze Sache jedoch nicht so einfach ist, müssen wir aufmerksam sein, um zu verstehen, was uns erwartet.

Neuronale Netze leicht gemacht (Teil 91): Vorhersage durch Frequenzbereiche (Frequency Domain Forecasting, FreDF)
Wir fahren fort mit der Analyse und Vorhersage von Zeitreihen im Frequenzbereich. In diesem Artikel machen wir uns mit einer neuen Methode zur Vorhersage von Daten im Frequenzbereich vertraut, die zu vielen der bisher untersuchten Algorithmen hinzugefügt werden kann.

Klassische Strategien neu interpretieren (Teil VII) : Devisenmärkte und die Analyse der Staatsverschuldung bezogen auf USDJPY
Im heutigen Artikel werden wir die Beziehung zwischen zukünftigen Wechselkursen und Staatsanleihen analysieren. Anleihen gehören zu den beliebtesten Formen von festverzinslichen Wertpapieren und stehen im Mittelpunkt unserer Diskussion, bei der wir untersuchen, ob wir eine klassische Strategie mithilfe von KI verbessern können.

Generative Adversarial Networks (GANs) für synthetische Daten in der Finanzmodellierung (Teil 2): Erstellen eines synthetischen Symbols für Tests
In diesem Artikel erstellen wir ein synthetisches Symbol mit Hilfe eines Generative Adversarial Network (GAN), das realistische Finanzdaten generiert, die das Verhalten tatsächlicher Marktinstrumente, wie z. B. EURUSD, nachahmen. Das GAN-Modell lernt Muster und Volatilität aus historischen Marktdaten und erstellt synthetische Preisdaten mit ähnlichen Merkmalen.

Mustererkennung mit dynamischer Zeitnormierung in MQL5
In diesem Artikel erörtern wir das Konzept der dynamischen Zeitnormierung als Mittel zur Ermittlung von Vorhersagemustern in Finanzzeitreihen. Wir werden uns ansehen, wie es funktioniert, und seine Implementierung in reinem MQL5 vorstellen.

Gating-Mechanismen beim Ensemblelernen
In diesem Artikel setzen wir unsere Untersuchung von Ensemblemodellen fort, indem wir das Konzept der Gates erörtern, insbesondere wie sie bei der Kombination von Modellergebnissen nützlich sein können, um entweder die Vorhersagegenauigkeit oder die Modellgeneralisierung zu verbessern.

Neuronale Netze leicht gemacht (Teil 85): Multivariate Zeitreihenvorhersage
In diesem Artikel möchte ich Ihnen eine neue komplexe Methode zur Zeitreihenprognose vorstellen, die die Vorteile von linearen Modellen und Transformer harmonisch vereint.

Erstellen von einem Trading Administrator Panel in MQL5 (Teil VI): Schnittstelle für mehrere Funktionen (I)
Die Rolle des Handelsadministrators geht über die reine Telegram-Kommunikation hinaus; er kann auch verschiedene Kontrolltätigkeiten ausüben, einschließlich Auftragsmanagement, Positionsverfolgung und Schnittstellenanpassung. In diesem Artikel geben wir praktische Einblicke in die Erweiterung unseres Programms zur Unterstützung mehrerer Funktionalitäten in MQL5. Dieses Update zielt darauf ab, die Beschränkung des aktuellen Admin Panels zu überwinden, das sich in erster Linie auf die Kommunikation konzentriert, und ermöglicht es, ein breiteres Spektrum von Aufgaben zu bewältigen.

MQL5 Handels-Toolkit (Teil 6): Erweitern der Bibliothek der History Management EX5 mit den Funktionen für den zuletzt ausgelösten, schwebenden Auftrag
Lernen Sie, wie Sie ein EX5-Modul mit exportierbaren Funktionen erstellen, die reibungslos Daten für den zuletzt ausgelösten, schwebenden Auftrag abfragen und speichern. In dieser umfassenden Schritt-für-Schritt-Anleitung werden wir die Bibliothek von History Management EX5 durch die Entwicklung dedizierter und unterteilter Funktionen erweitern, um wesentliche Eigenschaften des letzten ausgelösten, schwebenden Auftrags abzurufen. Zu diesen Eigenschaften gehören die Auftragsart, die Einrichtungszeit, die Ausführungszeit, die Art der Zuweisung und andere wichtige Details, die für eine effektive Verwaltung und Analyse des Handelsverlaufs ausstehender Aufträge erforderlich sind.

Entwicklung eines Replay Systems (Teil 52): Die Dinge werden kompliziert (IV)
In diesem Artikel werden wir den Mauszeiger ändern, um die Interaktion mit dem Kontrollindikator zu ermöglichen und einen zuverlässigen und stabilen Betrieb zu gewährleisten.

Kategorientheorie in MQL5 (Teil 4): Spannen, Experimente und Kompositionen
Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der in der MQL-Gemeinschaft noch relativ unentdeckt ist. In dieser Artikelserie sollen einige der Konzepte vorgestellt und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.

Algorithmus für die künstliche, kooperative Suche (Artificial Cooperative Search, ACS)
Die künstliche, kooperative Suche (Artificial Cooperative Search, ACS) ist eine innovative Methode, bei der eine binäre Matrix und mehrere dynamische Populationen auf der Grundlage von wechselseitigen Beziehungen und Kooperation verwendet werden, um schnell und genau optimale Lösungen zu finden. Der einzigartige Ansatz von ACS in Bezug auf Räuber und Beute ermöglicht es, hervorragende Ergebnisse bei numerischen Optimierungsproblemen zu erzielen.

Von der Grundstufe bis zur Mittelstufe: Arrays und Zeichenketten (I)
Im heutigen Artikel werden wir uns mit einigen speziellen Datentypen befassen. Zu Beginn werden wir definieren, was eine Zeichenkette ist, und erklären, wie man einige grundlegende Verfahren anwendet. Dies ermöglicht uns die Arbeit mit dieser Art von Daten, die interessant, wenn auch für Anfänger manchmal etwas verwirrend sein kann. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.

Nutzung des CatBoost Machine Learning Modells als Filter für Trendfolgestrategien
CatBoost ist ein leistungsfähiges, baumbasiertes, maschinelles Lernmodell, das auf die Entscheidungsfindung auf der Grundlage stationärer Merkmale spezialisiert ist. Andere baumbasierte Modelle wie XGBoost und Random Forest haben ähnliche Eigenschaften in Bezug auf ihre Robustheit, ihre Fähigkeit, komplexe Muster zu verarbeiten, und ihre Interpretierbarkeit. Diese Modelle haben ein breites Anwendungsspektrum, das von der Merkmalsanalyse bis zum Risikomanagement reicht.

Vorhersage von Wechselkursen mit klassischen Methoden des maschinellen Lernens: Logit- und Probit-Modelle
In diesem Artikel wird der Versuch unternommen, einen Handels-EA zur Vorhersage von Wechselkursen zu erstellen. Der Algorithmus basiert auf klassischen Klassifikationsmodellen - logistische und Probit-Regression. Das Kriterium des Wahrscheinlichkeitsquotienten wird als Filter für Handelssignale verwendet.

Schrittweise Merkmalsauswahl in MQL5
In diesem Artikel stellen wir eine modifizierte Version der schrittweisen Merkmalsauswahl vor, die in MQL5 implementiert ist. Dieser Ansatz basiert auf den Techniken, die in „Modern Data Mining Algorithms in C++ and CUDA C“ von Timothy Masters beschrieben sind.

Implementierung des kryptografischen SHA-256-Algorithmus von Grund auf in MQL5
Die Entwicklung DLL-freier Integrationen von Kryptowährungsbörsen war lange Zeit eine Herausforderung, aber diese Lösung bietet ein komplettes Framework für die direkte Marktanbindung.

Entwicklung eines Replay System (Teil 57): Verstehen eines Testdienstes
Ein Hinweis: Obwohl der Code für einen Dienst in diesem Artikel nicht enthalten ist und erst im nächsten Artikel zur Verfügung gestellt wird, werde ich ihn erläutern, da wir denselben Code als Sprungbrett für unsere eigentliche Entwicklung verwenden werden. Seien Sie also aufmerksam und geduldig. Warten Sie auf den nächsten Artikel, denn jeden Tag wird es interessanter.

Nutzerdefinierter Indikator: Darstellen von partiellen Eintritts-, Austritts- und Stornogeschäften für Netting-Konten
In diesem Artikel werden wir uns eine nicht standardisierte Methode zur Erstellung eines Indikators in MQL5 ansehen. Anstatt sich auf einen Trend oder ein Chartmuster zu konzentrieren, wird unser Ziel sein, unsere eigenen Positionen zu verwalten, einschließlich partieller Ein- und Ausstiege. Wir werden ausgiebig Gebrauch von dynamischen Matrizen und einigen Handelsfunktionen machen, die sich auf die Handelshistorie und offene Positionen beziehen, um auf dem Chart anzuzeigen, wo diese Geschäfte getätigt wurden.

Algorithmus einer Anarchischen Gesellschaftsoptimierung (ASO)
In diesem Artikel machen wir uns mit dem Algorithmus Anarchic Society Optimization (Anarchischen Gesellschaftsoptimierung, ASO) vertraut und erörtern, wie ein Algorithmus, der auf dem irrationalen und abenteuerlichen Verhalten von Teilnehmern in einer anarchischen Gesellschaft (einem anomalen System sozialer Interaktion, das frei von zentraler Macht und verschiedenen Arten von Hierarchien ist) basiert, in der Lage ist, den Lösungsraum zu erkunden und die Fallen des lokalen Optimums zu vermeiden. Der Artikel stellt eine einheitliche ASO-Struktur vor, die sowohl auf kontinuierliche als auch auf diskrete Probleme anwendbar ist.

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 13): Automatisierung der zweiten Phase — Aufteilung in Gruppen
Die erste Stufe der automatischen Optimierung haben wir bereits umgesetzt. Wir führen die Optimierung für verschiedene Symbole und Zeiträume nach mehreren Kriterien durch und speichern Informationen über die Ergebnisse jedes Durchgangs in der Datenbank. Nun werden wir die besten Gruppen von Parametersätzen aus den in der ersten Stufe gefundenen auswählen.

Algorithmus zur Optimierung der Migration der Tiere (AMO)
Der Artikel ist dem AMO-Algorithmus gewidmet, der die saisonale Migration von Tieren auf der Suche nach optimalen Bedingungen für Leben und Fortpflanzung modelliert. Zu den Hauptfunktionen von AMO gehören die Verwendung topologischer Nachbarschaften und ein probabilistischer Aktualisierungsmechanismus, der die Implementierung vereinfacht und die Flexibilität für verschiedene Optimierungsaufgaben gewährleistet.

Hidden Markov Modelle für trendfolgende Volatilitätsprognosen
Hidden Markov Modelle (HMM) sind leistungsstarke statistische Instrumente, die durch die Analyse beobachtbarer Kursbewegungen die zugrunde liegenden Marktzustände identifizieren. Im Handel verbessern HMM die Volatilitätsprognose und liefern Informationen für Trendfolgestrategien, indem sie Marktverschiebungen modellieren und antizipieren. In diesem Artikel stellen wir das vollständige Verfahren zur Entwicklung einer Trendfolgestrategie vor, die HMM zur Prognose der Volatilität als Filter einsetzt.

Meistern der Log-Einträge (Teil 4): Speichern der Protokolle in Dateien
In diesem Artikel zeige ich Ihnen die grundlegenden Dateioperationen und wie Sie einen flexiblen Handler zur Anpassung konfigurieren. Wir werden die Klasse CLogifyHandlerFile aktualisieren, um Protokolle direkt in die Datei zu schreiben. Wir werden einen Leistungstest durchführen, indem wir eine Strategie für EURUSD eine Woche lang simulieren und bei jedem Tick Protokolle erstellen, mit einer Gesamtzeit von 5 Minuten und 11 Sekunden. Das Ergebnis wird in einem zukünftigen Artikel verglichen, in dem wir ein Caching-System zur Verbesserung der Leistung implementieren werden.

Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 6): Selbstanpassende Handelsregeln (II)
Dieser Artikel befasst sich mit der Optimierung der RSI-Werte und -Perioden für bessere Handelssignale. Wir stellen Methoden zur Schätzung optimaler RSI-Werte vor und automatisieren die Periodenauswahl mithilfe von Rastersuche und statistischen Modellen. Schließlich implementieren wir die Lösung in MQL5 und setzen Python für die Analyse ein. Unser Ansatz ist pragmatisch und geradlinig, um Ihnen zu helfen, potenziell komplizierte Probleme auf einfache Weise zu lösen.

Entwicklung eines Replay Systems (Teil 44): Chart Trade Projekt (III)
Im vorherigen Artikel habe ich erklärt, wie Sie Vorlagedaten zur Verwendung in OBJ_CHART manipulieren können. In diesem Artikel habe ich das Thema nur umrissen, ohne auf Einzelheiten einzugehen, da die Arbeit in dieser Version sehr vereinfacht war. Dies geschah, um die Erklärung des Inhalts zu erleichtern, denn trotz der scheinbaren Einfachheit vieler Dinge waren einige davon nicht so offensichtlich, und ohne das Verständnis des einfachsten und grundlegendsten Teils wäre man nicht in der Lage, das gesamte Bild wirklich zu verstehen.

Klassische Strategien neu interpretieren (Teil IV): SP500 und US-Staatsanleihen
In dieser Artikelserie analysieren wir klassische Handelsstrategien mit modernen Algorithmen, um festzustellen, ob wir die Strategie mithilfe von KI verbessern können. Im heutigen Artikel greifen wir einen klassischen Ansatz für den Handel mit dem SP500 auf, indem wir seine Beziehung zu den US-Staatsanleihen nutzen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 37): Gaußsche Prozessregression mit linearen und Matérn-Kernel
Lineare Kernel sind die einfachste Matrix ihrer Art, die beim maschinellen Lernen für lineare Regression und Support Vector Machines verwendet wird. Der Matérn-Kernel hingegen ist eine vielseitigere Version der Radialbasisfunktion, die wir in einem früheren Artikel besprochen haben, und er eignet sich für die Abbildung von Funktionen, die nicht so glatt sind, wie es die RBF annehmen würde. Wir erstellen eine nutzerdefinierte Signalklasse, die beide Kernel für die Vorhersage von Long- und Short-Bedingungen verwendet.

Ensemble-Methoden zur Verbesserung numerischer Vorhersagen in MQL5
In diesem Artikel stellen wir die Implementierung mehrerer Ensemble-Lernmethoden in MQL5 vor und untersuchen ihre Wirksamkeit in verschiedenen Szenarien.

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 39): RSI (Relative Strength Index)
Der RSI ist ein beliebter Momentum-Oszillator, der das Tempo und den Umfang der jüngsten Kursveränderungen eines Wertpapiers misst, um über- und unterbewertete Situationen im Kurs des Wertpapiers zu bewerten. Diese Erkenntnisse in Bezug auf Geschwindigkeit und Ausmaß sind der Schlüssel zur Festlegung von Umkehrpunkten. Wir setzen diesen Oszillator in einer anderen nutzerdefinierten Signalklasse ein und untersuchen die Eigenschaften einiger seiner Signale. Wir beginnen jedoch mit dem Abschluss dessen, was wir zuvor über Bollinger-Bänder begonnen haben.

Überwachung des Handels mit Push-Benachrichtigungen — Beispiel für einen MetaTrader 5 Dienst
In diesem Artikel befassen wir uns mit der Erstellung einer Service-App für das Senden von Benachrichtigungen über Handelsergebnisse an ein Smartphone. Wir werden lernen, wie man mit Listen von Objekten der Standardbibliothek umgeht, um eine Auswahl von Objekten nach erforderlichen Eigenschaften zu organisieren.

Künstlicher Bienenstock-Algorithmus (ABHA): Tests und Ergebnisse
In diesem Artikel werden wir den Künstlichen Bienenstockalgorithmus (ABHA) weiter erforschen, indem wir in den Code eintauchen und die übrigen Methoden betrachten. Wie Sie sich vielleicht erinnern, wird jede Biene in diesem Modell als individueller Agent dargestellt, dessen Verhalten von internen und externen Informationen sowie von seinem Motivationszustand abhängt. Wir werden den Algorithmus an verschiedenen Funktionen testen und die Ergebnisse in der Bewertungstabelle zusammenfassen.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 5): Volatilitätsnavigator EA
Die Marktrichtung zu bestimmen kann einfach sein, aber zu wissen, wann man einsteigen sollte, kann eine Herausforderung sein. Im Rahmen der Serie „Entwicklung eines Toolkit zur Analyse von Preisaktionen" freue ich mich, ein weiteres Tool vorzustellen, das Einstiegspunkte, Take-Profit-Levels und Stop-Loss-Platzierungen bietet. Um dies zu erreichen, haben wir die Programmiersprache MQL5 verwendet. In diesem Artikel wollen wir die einzelnen Schritte näher erläutern.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 56): Bill Williams Fraktale
Die Fraktale von Bill Williams sind ein wirkungsvoller Indikator, der leicht übersehen wird, wenn man ihn zum ersten Mal auf einem Kurschart entdeckt. Er wirkt zu ereignisreich und wahrscheinlich nicht prägnant genug. Wir wollen den Vorhang über diesen Indikator lüften, indem wir untersuchen, was seine verschiedenen Muster bewirken könnten, wenn sie mit Vorwärtstests auf allen mit dem Assistenten zusammengestellten Expert Advisor untersucht werden.