Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 12): External Flow (III) TrendMap
Das Marktgeschehen wird von den Kräften zwischen Bullen und Bären bestimmt. Es gibt bestimmte Niveaus, die der Markt aufgrund der auf ihn wirkenden Kräfte einhält. Fibonacci- und VWAP-Levels sind besonders wirkungsvoll, um das Marktverhalten zu beeinflussen. Begleiten Sie mich in diesem Artikel bei der Erforschung einer Strategie, die auf VWAP und Fibonacci-Levels zur Signalgenerierung basiert.
Automatisieren von Handelsstrategien in MQL5 (Teil 7): Aufbau eines Raster-Handel EA mit dynamischer Losgrößen-Skalierung
In diesem Artikel bauen wir einen Expert Advisor in MQL5 für einen Raster-Handel, der eine dynamische Los-Skalierung verwendet. Wir behandeln die Strategieentwicklung, die Code-Implementierung und den Backtest-Prozess. Abschließend vermitteln wir wichtige Erkenntnisse und bewährte Verfahren zur Optimierung des automatisierten Handelssystems.
Erste Schritte mit MQL5 Algo Forge
Wir stellen die MQL5 Algo Forge vor – ein spezielles Portal für Entwickler des algorithmischem Handels. Es kombiniert die Leistungsfähigkeit von Git mit einer intuitiven Oberfläche für die Verwaltung und Organisation von Projekten innerhalb des MQL5-Ökosystems. Hier können Sie interessanten Autoren folgen, Teams bilden und an algorithmischen Handelsprojekten mitarbeiten.
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 2): Senden von Signalen von MQL5 an Telegram
In diesem Artikel erstellen wir einen in MQL5-Telegram integrierten Expert Advisor, der Moving Average Crossover Signale an Telegram sendet. Wir erläutern den Prozess der Erzeugung von Handelssignalen aus gleitenden Durchschnittsübergängen, die Implementierung des erforderlichen Codes in MQL5 und die Sicherstellung der nahtlosen Integration. Das Ergebnis ist ein System, das Handelswarnungen in Echtzeit direkt an Ihren Telegram-Gruppenchat sendet.
Hochfrequenz-Arbitrage-Handelssystem in Python mit MetaTrader 5
In diesem Artikel werden wir ein Arbitrationssystem erstellen, das in den Augen der Broker legal bleibt, Tausende von synthetischen Preisen auf dem Forex-Markt erstellt, sie analysiert und erfolgreich mit Gewinn handelt.
Datenkennzeichnung für die Zeitreihenanalyse (Teil 5):Anwendung und Test in einem EA mit Socket
In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung (labeling) von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
Neuronale Netze leicht gemacht (Teil 73): AutoBots zur Vorhersage von Kursbewegungen
Wir fahren fort mit der Erörterung von Algorithmen für das Training von Trajektorievorhersagemodellen. In diesem Artikel werden wir uns mit einer Methode namens „AutoBots“ vertraut machen.
Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen (Teil II): Abstimmung tiefer neuronaler Netze
Modelle für maschinelles Lernen verfügen über verschiedene einstellbare Parameter. In dieser Artikelserie werden wir untersuchen, wie Sie Ihre KI-Modelle mithilfe der SciPy-Bibliothek an Ihren spezifischen Markt anpassen können.
Integration von Broker-APIs mit Expert Advisors unter Verwendung von MQL5 und Python
In diesem Artikel besprechen wir die Implementierung von MQL5 in Verbindung mit Python, um brokerbezogene Operationen durchzuführen. Stellen Sie sich vor, dass ein kontinuierlich laufender Expert Advisor (EA) auf einem VPS gehostet wird, der in Ihrem Namen handelt. An einem bestimmten Punkt wird die Fähigkeit des EA, Mittel zu verwalten, von entscheidender Bedeutung. Dazu gehören Vorgänge wie die Aufladung Ihres Handelskontos und die Einleitung von Abhebungen. In dieser Diskussion werden wir die Vorteile und die praktische Umsetzung dieser Funktionen beleuchten, um eine nahtlose Integration des Fondsmanagements in Ihre Handelsstrategie zu gewährleisten. Bleiben Sie dran!
Nachrichtenhandel leicht gemacht (Teil 4): Leistungsverbesserung
Dieser Artikel befasst sich mit Methoden zur Verbesserung der Laufzeit des Experten im Strategietester. Der Code wird so geschrieben, dass die Zeiten der Nachrichtenereignisse in stündliche Kategorien unterteilt werden. Der Zugriff auf diese Ereigniszeiten erfolgt innerhalb der angegebenen Stunde. Dadurch wird sichergestellt, dass der EA sowohl in Umgebungen mit hoher als auch mit niedriger Volatilität effizient ereignisgesteuerte Trades verwalten kann.
Entwicklung von Analyseinstrumenten für Preisentwicklungen (Teil 1): Der Chart-Projektor
Dieses Projekt zielt darauf ab, den MQL5-Algorithmus zu nutzen, um einen umfassenden Satz von Analyseinstrumenten für MetaTrader 5 zu entwickeln. Diese Instrumente - von Skripten und Indikatoren bis hin zu KI-Modellen und Expert Advisor - automatisieren den Marktanalyseprozess. Mitunter wird diese Entwicklung zu Instrumenten führen, die in der Lage sind, fortgeschrittene Analysen ohne menschliches Zutun durchzuführen und die Ergebnisse auf geeigneten Plattformen vorherzusagen. Keine Gelegenheit wird jemals verpasst werden. Erkunden Sie mit mir den Prozess des Aufbaus einer robusten, maßgeschneiderten Marktanalyse-Instrumentenkasten. Wir werden mit der Entwicklung eines einfachen MQL5-Programms beginnen, das ich Chart-Projektor genannt habe.
Von Python zu MQL5: Eine Reise in quanteninspirierte Handelssysteme
Der Artikel befasst sich mit der Entwicklung eines quanteninspirierten Handelssystems, das von einem Python-Prototyp zu einer MQL5-Implementierung für den realen Handel übergeht. Das System nutzt die Prinzipien der Quanteninformatik wie Überlagerung und Verschränkung, um Marktzustände zu analysieren, obwohl es auf klassischen Computern mit Quantensimulatoren läuft. Zu den wichtigsten Merkmalen gehören ein Drei-Qubit-System zur gleichzeitigen Analyse von acht Marktzuständen, 24-Stunden-Rückblicke und sieben technische Indikatoren für die Marktanalyse. Auch wenn die Genauigkeitsraten bescheiden erscheinen mögen, bieten sie in Verbindung mit geeigneten Risikomanagementstrategien einen erheblichen Vorteil.
Entwicklung des Swing Entries Monitoring (EA)
Wenn sich das Jahr dem Ende zuneigt, denken langfristige Händler oft über die Geschichte des Marktes nach, um sein Verhalten und seine Trends zu analysieren und potenzielle zukünftige Bewegungen zu prognostizieren. In diesem Artikel befassen wir uns mit der Entwicklung eines Expert Advisors (EA) zur langfristigen Überwachung des Einstiegs mit MQL5. Ziel ist es, das Problem verpasster langfristiger Handelsmöglichkeiten zu lösen, das durch manuellen Handel und das Fehlen automatischer Überwachungssysteme verursacht wird. Wir werden eines der am häufigsten gehandelten Paare als Beispiel verwenden, um eine Strategie zu entwickeln und unsere Lösung effektiv zu gestalten.
Einführung in MQL5 (Teil 15): Ein Anfängerleitfaden zur Erstellung nutzerdefinierter Indikatoren (IV)
In diesem Artikel erfahren Sie, wie Sie einen Preisaktionsindikator in MQL5 erstellen und sich dabei auf Schlüsselpunkte wie Tief (L), Hoch (H), Höheres Tief (HL), Höheres Hoch (HH), Tieferes Tief (LL) und Tieferes Hoch (LH) für die Trendanalyse konzentrieren. Sie erfahren auch, wie Sie die Premium- und Discount-Zonen identifizieren, das 50%-Retracement-Level markieren und das Risiko-Ertrags-Verhältnis zur Berechnung von Gewinnzielen nutzen können. Der Artikel befasst sich auch mit der Bestimmung von Einstiegspunkten, Stop Loss (SL) und Take Profit (TP) auf der Grundlage der Trendstruktur.
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor
Dieser Artikel beschreibt den Aufbau eines adaptiven Expert Advisors (MarketRegimeEA) unter Verwendung des Regime-Detektors aus Teil 1. Er wechselt automatisch die Handelsstrategien und Risikoparameter für steigende, volatile oder Seitwärtsmärkte. Praktische Optimierung, Handhabung von Übergängen und ein Indikator für mehrere Zeitrahmen sind enthalten.
Entwicklung eines Replay Systems (Teil 40): Beginn der zweiten Phase (I)
Heute werden wir über die neue Phase des Replay/Simulator-Systems sprechen. In dieser Phase wird das Gespräch wirklich interessant und sehr inhaltsreich. Ich empfehle Ihnen dringend, den Artikel sorgfältig zu lesen und die darin enthaltenen Links zu nutzen. Dies wird Ihnen helfen, den Inhalt besser zu verstehen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 8): Belastungstest und Handhabung eines neuen Balkens
Im weiteren Verlauf haben wir immer mehr gleichzeitig laufende Instanzen von Handelsstrategien in einem EA verwendet. Versuchen wir herauszufinden, wie viele Instanzen wir erreichen können, bevor wir an Ressourcengrenzen stoßen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 45): Reinforcement Learning mit Monte-Carlo
Monte-Carlo ist der vierte, alternative Algorithmus des Reinforcement Learning, den wir mit dem Ziel betrachten, seine Implementierung in assistentengestützte Expert Advisors zu untersuchen. Obwohl sie auf Zufallsstichproben beruht, bietet sie umfangreiche Simulationsmöglichkeiten, die wir ausnutzen können.
DoEasy. Steuerung (Teil 16): TabControl WinForms-Objekt — mehrere Reihen von Registerkarten-Kopfzeilen, Dehnung der Kopfzeilen zur Anpassung an den Container
In diesem Artikel werde ich die Entwicklung von TabControl fortsetzen und die Anordnung von Tabulatorüberschriften auf allen vier Seiten des Steuerelements für alle Modi der Einstellung der Größe der Überschriften implementieren: Normal, Fixed und Fill To Right (rechts auffüllend).
Kategorientheorie in MQL5 (Teil 12): Ordnungsrelationen
Dieser Artikel, der Teil einer Serie ist, die der kategorientheoretischen Implementierung von Graphen in MQL5 folgt, befasst sich mit Ordnungen. Wir untersuchen, wie Konzepte der Ordnungstheorie monoide Mengen bei der Information über Handelsentscheidungen unterstützen können, indem wir zwei wichtige Ordnungstypen betrachten.
Die Gruppenmethode der Datenverarbeitung: Implementierung des Kombinatorischen Algorithmus in MQL5
In diesem Artikel setzen wir unsere Untersuchung der Algorithmenfamilie Group Method of Data Handling mit der Implementierung des Kombinatorischen Algorithmus und seiner verfeinerten Variante, dem Kombinatorischen Selektiven Algorithmus in MQL5 fort.
Künstlicher Algenalgorithmus (AAA)
Der Artikel befasst sich mit dem Künstlichen Algenalgorithmus (AAA), der auf den für Mikroalgen charakteristischen biologischen Prozessen beruht. Der Algorithmus umfasst eine Spiralbewegung, einen evolutionären Prozess und eine Anpassung, die es ihm ermöglicht, Optimierungsprobleme zu lösen. Der Artikel bietet eine eingehende Analyse der Funktionsprinzipien der AAA und ihres Potenzials für die mathematische Modellierung, wobei die Verbindung zwischen Natur und algorithmischen Lösungen hervorgehoben wird.
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 4): Modularisierung von Codefunktionen für bessere Wiederverwendbarkeit
In diesem Artikel wird der bestehende Code für das Senden von Nachrichten und Screenshots (screenshot des Terminals) von MQL5 zu Telegram refaktorisiert, indem er in wiederverwendbare, modulare Funktionen aufgeteilt wird. Dadurch wird der Prozess rationalisiert, was eine effizientere Ausführung und eine einfachere Codeverwaltung über mehrere Instanzen hinweg ermöglicht.
MetaTrader 5 Machine Learning Blueprint (Teil 1): Datenlecks und Zeitstempelfehler
Bevor wir überhaupt damit beginnen können, ML für unseren Handel auf dem MetaTrader 5 zu nutzen, müssen wir uns mit einem der am meisten übersehenen Fallstricke befassen - dem Datenleck. In diesem Artikel wird erläutert, wie Datenlecks, insbesondere die Falle von MetaTrader 5-Zeitstempel, die Leistung unseres Modells verzerren und zu unzuverlässigen Handelssignalen führen können. Indem wir uns mit den Mechanismen dieses Problems befassen und Strategien zu seiner Vermeidung vorstellen, ebnen wir den Weg für den Aufbau robuster Modelle für maschinelles Lernen, die zuverlässige Vorhersagen in Live-Handelsumgebungen liefern.
Implementierung von praktischen Modulen aus anderen Sprachen in MQL5 (Teil 02): Aufbau der REQUESTS-Bibliothek, inspiriert von Python
In diesem Artikel implementieren wir ein Modul, das den in Python angebotenen Anfragen ähnelt, um das Senden und Empfangen von Web-Anfragen in MetaTrader 5 mit MQL5 zu erleichtern.
Entwicklung eines Replay Systems (Teil 45): Chart Trade Projekt (IV)
Der Hauptzweck dieses Artikels ist die Einführung und Erläuterung der Klasse C_ChartFloatingRAD. Wir haben einen Chart Trade-Indikator, der auf recht interessante Weise funktioniert. Wie Sie vielleicht bemerkt haben, haben wir immer noch eine relativ kleine Anzahl von Objekten im Chart, und dennoch erhalten wir die erwartete Funktionalität. Die im Indikator enthaltenen Werte können bearbeitet werden. Die Frage ist, wie ist das möglich? Dieser Artikel wird die Dinge etwas klarer machen.
Kategorientheorie (Teil 9): Monoid-Aktionen
Dieser Artikel setzt die Serie über die Implementierung der Kategorientheorie in MQL5 fort. Hier setzen wir Monoid-Aktionen als Mittel zur Transformation von Monoiden fort, die im vorigen Artikel behandelt wurden und zu mehr Anwendungen führen.
Neuronale Netze leicht gemacht (Teil 76): Erforschung verschiedener Interaktionsmuster mit Multi-Future Transformer
Dieser Artikel setzt das Thema der Vorhersage der kommenden Kursentwicklung fort. Ich lade Sie ein, sich mit der Architektur eines Multi-Future Transformers vertraut zu machen. Die Hauptidee besteht darin, die multimodale Verteilung der Zukunft in mehrere unimodale Verteilungen zu zerlegen, was es ermöglicht, verschiedene Modelle der Interaktion zwischen Agenten auf der Szene effektiv zu simulieren.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 9): External Flow
In diesem Artikel wird eine neue Dimension der Analyse unter Verwendung externer Bibliotheken untersucht, die speziell für fortgeschrittene Analysen entwickelt wurden. Diese Bibliotheken, wie z. B. Pandas, bieten leistungsstarke Werkzeuge für die Verarbeitung und Interpretation komplexer Daten, die es Händlern ermöglichen, tiefere Einblicke in die Marktdynamik zu gewinnen. Durch die Integration solcher Technologien können wir die Lücke zwischen Rohdaten und umsetzbaren Strategien schließen. Begleiten Sie uns, wenn wir den Grundstein für diesen innovativen Ansatz legen und das Potenzial der Kombination von Technologie und Handelskompetenz erschließen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 15): Support-Vektor-Maschinen mit dem Newtonschen Polynom
Support-Vektor-Maschinen klassifizieren Daten auf der Grundlage vordefinierter Klassen, indem sie die Auswirkungen einer Erhöhung der Dimensionalität untersuchen. Es handelt sich um eine überwachte Lernmethode, die angesichts ihres Potenzials, mit mehrdimensionalen Daten umzugehen, ziemlich komplex ist. In diesem Artikel wird untersucht, wie die sehr einfache Implementierung von 2-dimensionalen Daten mit dem Newton'schen Polynom bei der Klassifizierung von Preis-Aktionen effizienter durchgeführt werden kann.
Bewältigung der Herausforderungen bei der ONNX-Integration
ONNX ist ein großartiges Werkzeug für die Integration von komplexem KI-Code zwischen verschiedenen Plattformen. Es ist ein großartiges Werkzeug, das einige Herausforderungen mit sich bringt, die man angehen muss, um das Beste daraus zu machen.
Neuronale Netze leicht gemacht (Teil 95): Reduzierung des Speicherverbrauchs in Transformermodellen
Auf der Transformerarchitektur basierende Modelle weisen eine hohe Effizienz auf, aber ihre Verwendung wird durch hohe Ressourcenkosten sowohl in der Trainingsphase als auch während des Betriebs erschwert. In diesem Artikel schlage ich vor, sich mit Algorithmen vertraut zu machen, die es ermöglichen, den Speicherverbrauch solcher Modelle zu reduzieren.
Robustheitstests für Expert Advisors
Bei der Entwicklung von Strategien sind viele komplizierte Details zu berücksichtigen, von denen viele für Anfänger nicht besonders interessant sind. Infolgedessen mussten viele Händler, mich eingeschlossen, diese Lektionen auf die harte Tour lernen. Dieser Artikel basiert auf meinen Beobachtungen von häufigen Fallstricken, die den meisten Anfängern bei der Entwicklung von Strategien auf MQL5 begegnen. Es wird eine Reihe von Tipps, Tricks und Beispielen bieten, die dabei helfen, die Untauglichkeit eines EA zu erkennen und die Robustheit unserer eigenen EAs auf einfache Weise zu testen. Ziel ist es, die Leser aufzuklären und ihnen zu helfen, zukünftige Betrügereien beim Kauf von EAs zu vermeiden und Fehler bei der eigenen Strategieentwicklung zu verhindern.
Vom Neuling zum Experten: Programmieren von Kerzen
In diesem Artikel machen wir den ersten Schritt in die MQL5-Programmierung, auch für absolute Anfänger. Wir zeigen Ihnen, wie Sie bekannte Kerzenmuster in einen voll funktionsfähigen nutzerdefinierten Indikator verwandeln können. Kerzenmuster sind wertvoll, da sie reale Kursbewegungen widerspiegeln und Marktverschiebungen signalisieren. Anstatt die Charts manuell zu scannen - ein Ansatz, der fehleranfällig und ineffizient ist - werden wir besprechen, wie Sie den Prozess mit einem Indikator automatisieren können, der Muster für Sie identifiziert und kennzeichnet. Auf dem Weg dorthin werden wir uns mit Schlüsselkonzepten wie Indexierung, Zeitreihen, Average True Range (für Genauigkeit bei schwankender Marktvolatilität) und der Entwicklung einer nutzerdefinierten, wiederverwendbaren Bibliothek von Kerzen-Mustern für den Einsatz in zukünftigen Projekten beschäftigen.
Erstellen von MQL5-ähnlichen Handelsklassen in Python für MetaTrader 5
Das MetaTrader 5 Python-Paket bietet eine einfache Möglichkeit, Handelsanwendungen für die MetaTrader 5-Plattform in der Sprache Python zu erstellen. Obwohl dieses Modul ein leistungsstarkes und nützliches Werkzeug ist, ist es nicht so einfach wie die MQL5-Programmiersprache, wenn es darum geht, eine algorithmische Handelslösung zu erstellen. In diesem Artikel werden wir Handelsklassen erstellen, die den in MQL5 angebotenen ähnlich sind, um eine ähnliche Syntax zu schaffen und es einfacher zu machen, Handelsroboter in Python wie in MQL5 zu erstellen.
Neuronale Netze leicht gemacht (Teil 74): Trajektorienvorhersage mit Anpassung
In diesem Artikel wird eine recht effektive Methode zur Vorhersage der Trajektorie von Multi-Agenten vorgestellt, die sich an verschiedene Umweltbedingungen anpassen kann.
Von der Grundstufe bis zur Mittelstufe: Variablen (I)
Vielen Programmieranfängern fällt es schwer zu verstehen, warum ihr Code nicht so funktioniert, wie sie es erwarten. Es gibt viele Dinge, die einen Code wirklich funktional machen. Es ist nicht nur ein Haufen verschiedener Funktionen und Operationen, die den Code zum Laufen bringen. Heute lade ich Sie dazu ein, zu lernen, wie man richtigen Code erstellt, anstatt Fragmente zu kopieren und einzufügen. Die hier vorgestellten Materialien sind ausschließlich für didaktische Zwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
Von der Grundstufe bis zur Mittelstufe: Operatoren
In diesem Artikel werden wir uns die wichtigsten Operatoren ansehen. Obwohl das Thema einfach zu verstehen ist, gibt es einige Punkte, die von großer Bedeutung sind, wenn es darum geht, mathematische Ausdrücke in das Codeformat aufzunehmen. Ohne ein angemessenes Verständnis dieser Details geben Programmierer mit wenig oder gar keiner Erfahrung schließlich den Versuch auf, ihre eigenen Lösungen zu entwickeln.
Meistern Sie MQL5 vom Anfänger bis zum Profi (Teil IV): Über Arrays, Funktionen und globale Terminalvariablen
Der Artikel ist eine Fortsetzung der Serie für Einsteiger. Ers behandelt im Detail Datenarrays, die Interaktion von Daten und Funktionen sowie globale Terminalvariablen, die einen Datenaustausch zwischen verschiedenen MQL5-Programmen ermöglichen.
Handel mit dem MQL5 Wirtschaftskalender (Teil 3): Hinzufügen de Filter für Währung, Bedeutung und Zeit
In diesem Artikel implementieren wir Filter in das MQL5-Wirtschaftskalender-Dashboard, um die Anzeige von Nachrichtenereignissen nach Währung, Bedeutung und Zeit zu verfeinern. Wir erstellen zunächst Filterkriterien für jede Kategorie und integrieren diese dann in das Dashboard, um nur relevante Ereignisse anzuzeigen. Schließlich stellen wir sicher, dass jeder Filter dynamisch aktualisiert wird, um Händlern gezielte wirtschaftliche Erkenntnisse in Echtzeit zu liefern.