
Entwicklung eines Replay Systems (Teil 45): Chart Trade Projekt (IV)
Der Hauptzweck dieses Artikels ist die Einführung und Erläuterung der Klasse C_ChartFloatingRAD. Wir haben einen Chart Trade-Indikator, der auf recht interessante Weise funktioniert. Wie Sie vielleicht bemerkt haben, haben wir immer noch eine relativ kleine Anzahl von Objekten im Chart, und dennoch erhalten wir die erwartete Funktionalität. Die im Indikator enthaltenen Werte können bearbeitet werden. Die Frage ist, wie ist das möglich? Dieser Artikel wird die Dinge etwas klarer machen.

Data label for time series mining (Part 5):Apply and Test in EA Using Socket
This series of articles introduces several time series labeling methods, which can create data that meets most artificial intelligence models, and targeted data labeling according to needs can make the trained artificial intelligence model more in line with the expected design, improve the accuracy of our model, and even help the model make a qualitative leap!

DoEasy. Steuerung (Teil 8): Objektkategorien von Basis-WinForms zur Steuerung von GroupBox- und CheckBox
Der Artikel befasst sich mit der Erstellung von ‚GroupBox‘ und ‚CheckBox‘ WinForms Objekten, sowie der Entwicklung von Basisobjekten für WinForms Objektkategorien. Alle erstellten Objekte sind noch statisch, d.h. sie können nicht mit der Maus interagieren.

Ein Algorithmus zur Auswahl von Merkmalen, der energiebasiertes Lernen in reinem MQL5 verwendet
In diesem Artikel stellen wir die Implementierung eines Algorithmus zur Auswahl von Merkmalen vor, der in einer wissenschaftlichen Arbeit mit dem Titel „FREL: A stable feature selection algorithm“ vorgestellt wurde und auch als Merkmalsgewichtung als reguliertes energiebasiertes Lernen bezeichnet werden kann.

Neuronale Netze leicht gemacht (Teil 95): Reduzierung des Speicherverbrauchs in Transformermodellen
Auf der Transformerarchitektur basierende Modelle weisen eine hohe Effizienz auf, aber ihre Verwendung wird durch hohe Ressourcenkosten sowohl in der Trainingsphase als auch während des Betriebs erschwert. In diesem Artikel schlage ich vor, sich mit Algorithmen vertraut zu machen, die es ermöglichen, den Speicherverbrauch solcher Modelle zu reduzieren.

Algorithmen zur Optimierung mit Populationen: Evolution sozialer Gruppen (ESG)
Wir werden das Prinzip des Aufbaus von Algorithmen mit mehreren Populationen besprechen. Als Beispiel für diese Art von Algorithmus werden wir uns den neuen nutzerdefinierten Algorithmus - Evolution of Social Groups (ESG) - ansehen. Wir werden die grundlegenden Konzepte, die Mechanismen der Populationsinteraktion und die Vorteile dieses Algorithmus analysieren und seine Leistung bei Optimierungsproblemen untersuchen.

DoEasy. Steuerung (Teil 5): Basisobjekt von WinForms, Paneel-Steuerelement, Parameter AutoSize
In diesem Artikel werde ich das Basisobjekt aller Bibliotheks-WinForms-Objekte erstellen und mit der Implementierung der AutoSize-Eigenschaft des Paneel-Objekts für WinForms beginnen – automatische Größenanpassung zum Anpassen des internen Inhalts des Objekts.

Developing a Replay System (Part 37): Paving the Path (I)
In this article, we will finally begin to do what we wanted to do much earlier. However, due to the lack of "solid ground", I did not feel confident to present this part publicly. Now I have the basis to do this. I suggest that you focus as much as possible on understanding the content of this article. I mean not simply reading it. I want to emphasize that if you do not understand this article, you can completely give up hope of understanding the content of the following ones.

Kategorientheorie (Teil 9): Monoid-Aktionen
Dieser Artikel setzt die Serie über die Implementierung der Kategorientheorie in MQL5 fort. Hier setzen wir Monoid-Aktionen als Mittel zur Transformation von Monoiden fort, die im vorigen Artikel behandelt wurden und zu mehr Anwendungen führen.

Nachrichtenhandel leicht gemacht (Teil 4): Leistungsverbesserung
Dieser Artikel befasst sich mit Methoden zur Verbesserung der Laufzeit des Experten im Strategietester. Der Code wird so geschrieben, dass die Zeiten der Nachrichtenereignisse in stündliche Kategorien unterteilt werden. Der Zugriff auf diese Ereigniszeiten erfolgt innerhalb der angegebenen Stunde. Dadurch wird sichergestellt, dass der EA sowohl in Umgebungen mit hoher als auch mit niedriger Volatilität effizient ereignisgesteuerte Trades verwalten kann.

Neuronale Netze leicht gemacht (Teil 69): Dichte-basierte Unterstützungsbedingung für die Verhaltenspolitik (SPOT)
Beim Offline-Lernen verwenden wir einen festen Datensatz, der die Umweltvielfalt nur begrenzt abdeckt. Während des Lernprozesses kann unser Agent Aktionen generieren, die über diesen Datensatz hinausgehen. Wenn es keine Rückmeldungen aus der Umwelt gibt, wie können wir dann sicher sein, dass die Bewertungen solcher Maßnahmen korrekt sind? Die Beibehaltung der Agentenpolitik innerhalb des Trainingsdatensatzes ist ein wichtiger Aspekt, um die Zuverlässigkeit des Trainings zu gewährleisten. Darüber werden wir in diesem Artikel sprechen.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil I): Aufbau einer Nachrichtenschnittstelle
Dieser Artikel beschreibt die Erstellung einer Nachrichtenschnittstelle (Messaging Interface) für MetaTrader 5, die sich an Systemadministratoren richtet, um die Kommunikation mit anderen Händlern direkt auf der Plattform zu erleichtern. Jüngste Integrationen von sozialen Plattformen mit MQL5 ermöglichen eine schnelle Signalübertragung über verschiedene Kanäle. Stellen Sie sich vor, Sie könnten gesendete Signale mit nur einem Klick validieren - entweder „JA“ oder „NEIN“ bzw. „YES“ or „NO“. Lesen Sie weiter, um mehr zu erfahren.

Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 2): Senden von Signalen von MQL5 an Telegram
In diesem Artikel erstellen wir einen in MQL5-Telegram integrierten Expert Advisor, der Moving Average Crossover Signale an Telegram sendet. Wir erläutern den Prozess der Erzeugung von Handelssignalen aus gleitenden Durchschnittsübergängen, die Implementierung des erforderlichen Codes in MQL5 und die Sicherstellung der nahtlosen Integration. Das Ergebnis ist ein System, das Handelswarnungen in Echtzeit direkt an Ihren Telegram-Gruppenchat sendet.

Data label for time series mining (Part 6):Apply and Test in EA Using ONNX
This series of articles introduces several time series labeling methods, which can create data that meets most artificial intelligence models, and targeted data labeling according to needs can make the trained artificial intelligence model more in line with the expected design, improve the accuracy of our model, and even help the model make a qualitative leap!

DRAW_ARROW Zeichnungstyp in Multi-Symbol-Multi-Perioden-Indikatoren
In diesem Artikel werden wir uns mit Multi-Symbol-Multi-Perioden-Indikatoren beschäftigen, die Pfeile zeichnen. Wir werden auch die Klassenmethoden für die korrekte Anzeige von Pfeilen verbessern, die Daten von Pfeilindikatoren anzeigen, die auf einem Symbol/einer Periode berechnet wurden, das/die nicht mit dem Symbol/der Periode des aktuellen Charts übereinstimmt.

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 16): Auswirkungen unterschiedlicher Kursverläufe auf die Testergebnisse
Es wird erwartet, dass der in der Entwicklung befindliche EA gute Ergebnisse beim Handel mit verschiedenen Brokern zeigt. Aber im Moment haben wir die Kurse eines MetaQuotes-Demokontos verwendet, um Tests durchzuführen. Lassen Sie uns sehen, ob unser EA bereit ist, auf einem Handelskonto mit anderen Kursen zu arbeiten, als die, die wir während der Tests und der Optimierung verwendet haben.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 45): Reinforcement Learning mit Monte-Carlo
Monte-Carlo ist der vierte, alternative Algorithmus des Reinforcement Learning, den wir mit dem Ziel betrachten, seine Implementierung in assistentengestützte Expert Advisors zu untersuchen. Obwohl sie auf Zufallsstichproben beruht, bietet sie umfangreiche Simulationsmöglichkeiten, die wir ausnutzen können.

Grafiken in der Bibliothek DoEasy (Teil 98): Verschieben von Angelpunkten erweiterter grafischer Standardobjekte
In diesem Artikel setze ich die Entwicklung erweiterter grafischer Standardobjekte fort und schaffe die Funktionen zum Verschieben von Angelpunkten zusammengesetzter grafischer Objekte unter Verwendung von Kontrollpunkten zur Verwaltung der Koordinaten der Angelpunkte des grafischen Objekts.

Kategorientheorie in MQL5 (Teil 5): Differenzkern oder Egalisator
Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der erst seit kurzem in der MQL5-Gemeinschaft Beachtung findet. In dieser Artikelserie sollen einige der Konzepte und Axiome erforscht und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich auch die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.

Kategorientheorie in MQL5 (Teil 7): Mehrere, relative und indizierte Domänen
Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der erst seit kurzem in der MQL5-Gemeinschaft Beachtung findet. In dieser Artikelserie sollen einige der Konzepte und Axiome erforscht und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich auch die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.

Neuronale Netze leicht gemacht (Teil 71): Zielkonditionierte prädiktive Kodierung (Goal-Conditioned Predictive Coding, GCPC)
In früheren Artikeln haben wir die Decision-Transformer-Methode und mehrere davon abgeleitete Algorithmen besprochen. Wir haben mit verschiedenen Zielsetzungsmethoden experimentiert. Während der Experimente haben wir mit verschiedenen Arten der Zielsetzung gearbeitet. Die Studie des Modells über die frühere Trajektorie blieb jedoch immer außerhalb unserer Aufmerksamkeit. In diesem Artikel. Ich möchte Ihnen eine Methode vorstellen, die diese Lücke füllt.

Neuronale Netze leicht gemacht (Teil 87): Zeitreihen-Patching
Die Vorhersage spielt eine wichtige Rolle in der Zeitreihenanalyse. Im neuen Artikel werden wir über die Vorteile des Zeitreihen-Patchings sprechen.

Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen (Teil II): Abstimmung tiefer neuronaler Netze
Modelle für maschinelles Lernen verfügen über verschiedene einstellbare Parameter. In dieser Artikelserie werden wir untersuchen, wie Sie Ihre KI-Modelle mithilfe der SciPy-Bibliothek an Ihren spezifischen Markt anpassen können.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 42): ADX-Oszillator
Der ADX ist ein weiterer relativ beliebter technischer Indikator, der von einigen Händlern verwendet wird, um die Stärke eines vorherrschenden Trends zu messen. Als Kombination von zwei anderen Indikatoren stellt er einen Oszillator dar, dessen Muster wir in diesem Artikel mit Hilfe der MQL5-Assistentengruppe und ihrer Unterstützungsklassen untersuchen.

Neuronales Netz in der Praxis: Pseudoinverse (I)
Heute werden wir uns damit beschäftigen, wie man die Berechnung der Pseudoinverse in der reinen MQL5-Sprache implementiert. Der Code, den wir uns ansehen werden, wird für Anfänger viel komplexer sein, als ich erwartet hatte, und ich bin noch dabei herauszufinden, wie ich ihn auf einfache Weise erklären kann. Betrachten Sie dies also als eine Gelegenheit, einen ungewöhnlichen Code zu lernen. Ruhig und aufmerksam. Obwohl es nicht auf eine effiziente oder schnelle Anwendung abzielt, soll es so didaktisch wie möglich sein.

Bewältigung der Herausforderungen bei der ONNX-Integration
ONNX ist ein großartiges Werkzeug für die Integration von komplexem KI-Code zwischen verschiedenen Plattformen. Es ist ein großartiges Werkzeug, das einige Herausforderungen mit sich bringt, die man angehen muss, um das Beste daraus zu machen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 30): Spotlight auf Batch-Normalisierung beim maschinellen Lernen
Die Batch-Normalisierung ist die Vorverarbeitung von Daten, bevor sie in einen Algorithmus für maschinelles Lernen, z. B. ein neuronales Netz, eingespeist werden. Dies geschieht immer unter Berücksichtigung der Art der Aktivierung, die der Algorithmus verwenden soll. Wir untersuchen daher die verschiedenen Ansätze, die man mit Hilfe eines von einem Assistenten zusammengestellten Expert Advisors verfolgen kann, um die Vorteile dieses Ansatzes zu nutzen.

Beispiel für stochastische Optimierung und optimale Kontrolle
Dieser Expert Advisor mit dem Namen SMOC (steht für Stochastic Model Optimal Control) ist ein einfaches Beispiel für ein fortschrittliches algorithmisches Handelssystem für MetaTrader 5. Es verwendet eine Kombination aus technischen Indikatoren, modellprädiktiver Steuerung und dynamischem Risikomanagement, um Handelsentscheidungen zu treffen. Der EA verfügt über adaptive Parameter, volatilitätsbasierte Positionsgrößen und Trendanalysen, um seine Leistung unter verschiedenen Marktbedingungen zu optimieren.

Entwicklung eines Replay Systems (Teil 54): Die Geburt des ersten Moduls
In diesem Artikel werden wir uns ansehen, wie wir das erste einer Reihe von wirklich funktionalen Modulen für die Verwendung im Replay-/Simulatorsystem zusammenstellen, die auch für andere Zwecke geeignet sein werden. Die Rede ist vom Mausmodul.

Neuronale Netze leicht gemacht (Teil 78): Decoderfreier Objektdetektor mit Transformator (DFFT)
In diesem Artikel schlage ich vor, das Thema der Entwicklung einer Handelsstrategie aus einem anderen Blickwinkel zu betrachten. Wir werden keine zukünftigen Kursbewegungen vorhersagen, sondern versuchen, ein Handelssystem auf der Grundlage der Analyse historischer Daten aufzubauen.

MQL5 beherrschen, vom Anfänger zum Profi (Teil III): Komplexe Datentypen und Include-Dateien
Dies ist der dritte Artikel in einer Serie, in der die wichtigsten Aspekte der MQL5-Programmierung beschrieben werden. Dieser Artikel behandelt komplexe Datentypen, die im vorherigen Artikel nicht behandelt wurden. Dazu gehören Strukturen, Unions, Klassen und der Datentyp „function“. Außerdem wird erklärt, wie Sie Ihr Programm mit Hilfe der Präprozessoranweisung #include modularisieren können.

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 9): Sammeln von Optimierungsergebnissen für einzelne Handelsstrategie-Instanzen
Schauen wir uns die wichtigsten Phasen der EA-Entwicklung an. Eine der ersten Aufgaben besteht darin, eine einzelne Instanz der entwickelten Handelsstrategie zu optimieren. Versuchen wir, alle notwendigen Informationen über die Testergebnisse während der Optimierung an einem Ort zu sammeln.

MQL5-Assistent - Techniken, die Sie kennen sollten (14): Zeitreihenvorhersage mit mehreren Zielvorgaben durch STF
Die räumlich-zeitliche Fusion, bei der sowohl räumliche als auch zeitliche Metriken zur Modellierung von Daten verwendet werden, ist vor allem bei der Fernerkundung und einer Vielzahl anderer visueller Aktivitäten nützlich, um ein besseres Verständnis unserer Umgebung zu erlangen. Dank eines veröffentlichten Artikels verfolgen wir einen neuen Ansatz, indem wir sein Potenzial für Händler untersuchen.

Klassische Strategien neu interpretieren (Teil III): Prognose von höhere Hochs und tiefere Tiefs
In dieser Artikelserie werden wir klassische Handelsstrategien empirisch analysieren, um zu sehen, ob wir sie mithilfe von KI verbessern können. In der heutigen Diskussion haben wir versucht, mithilfe des Modells der linearen Diskriminanzanalyse höhere Hochs und tiefere Tiefs vorherzusagen.

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 31): Auswahl der Verlustfunktion
Die Verlustfunktion ist die wichtigste Kennzahl für Algorithmen des maschinellen Lernens, die eine Rückmeldung für den Trainingsprozess liefert, indem sie angibt, wie gut ein bestimmter Satz von Parametern im Vergleich zum beabsichtigten Ziel funktioniert. Wir untersuchen die verschiedenen Formate dieser Funktion in einer nutzerdefinierten MQL5-Assistenten-Klasse.

Eine generische Optimierungsformulierung (GOF) zur Implementierung von Custom Max mit Nebenbedingungen
In diesem Artikel stellen wir Ihnen eine Möglichkeit vor, Optimierungsprobleme mit mehreren Zielen und Nebenbedingungen zu implementieren, wenn Sie „Custom max“ in der Registerkarte „Einstellungen“ des MetaTrader 5-Terminals auswählen. Das Optimierungsproblem könnte zum Beispiel lauten: Maximieren Sie den Gewinnfaktor, den Nettogewinn und den Erholungsfaktor, sodass der Drawdown weniger als 10 % beträgt, die Anzahl der aufeinanderfolgenden Verluste weniger als 5 und die Anzahl der Trades pro Woche mehr als 5 beträgt.

Zeitreihen-Clustering für kausales Schlussfolgern
Clustering-Algorithmen beim maschinellen Lernen sind wichtige unüberwachte Lernalgorithmen, die die ursprünglichen Daten in Gruppen mit ähnlichen Beobachtungen unterteilen können. Anhand dieser Gruppen können Sie den Markt für ein bestimmtes Cluster analysieren, anhand neuer Daten nach den stabilsten Clustern suchen und kausale Schlüsse ziehen. In dem Artikel wird eine originelle Methode für das Clustering von Zeitreihen in Python vorgeschlagen.

Dekonstruktion von Beispielen für Handelsstrategien im Client-Terminal
Der Artikel verwendet Blockdiagramme, um die Logik der auf Kerzen basierenden Trainings-EAs zu untersuchen, die sich im Ordner Experts\Free Robots des Terminals befinden.

Der Optimierungsalgorithmus Brain Storm (Teil II): Multimodalität
Im zweiten Teil des Artikels werden wir uns mit der praktischen Implementierung des BSO-Algorithmus befassen, Tests mit Testfunktionen durchführen und die Effizienz von BSO mit anderen Optimierungsmethoden vergleichen.

Kolmogorov-Smirnov-Test bei zwei Stichproben als Indikator für die Nicht-Stationarität von Zeitreihen
Der Artikel befasst sich mit einem der bekanntesten nichtparametrischen Homogenitätstests – dem Kolmogorov-Smirnov-Test mit zwei Stichproben. Es werden sowohl Modelldaten als auch reale Kurse analysiert. Der Artikel enthält auch ein Beispiel für die Konstruktion eines Nicht-Stationaritätsindikators (iSmirnovDistance).