
掌握市场动态:创建有关支撑与阻力位策略的EA
一个关于基于支撑位与阻力位策略开发自动化交易算法的全面指南。详细介绍了在MQL5中创建EA以及在MetaTrader 5中对其进行测试的所有方面——从分析价格区间行为到风险管理。

如何利用 MQL5 创建简单的多币种智能交易系统(第 7 部分):依据动量振荡器指标的之字折线
本文中的多货币智能系统是利用之字折线(ZigZag)指标的自动交易系统,该指标依据动量振荡器过滤、或彼此过滤信号。

突破结构(BoS)交易策略分步指南
基于结构突破(Break of Structure, BoS)策略的自动化交易算法开发综合指南在MQL5中创建交易顾问并在MetaTrader 5中进行测试的全方位详解——从分析价格支撑与阻力到风险管理

构建K线图趋势约束模型(第三部分):在使用该系统时检测趋势变化
本文探讨了经济新闻发布、投资者行为以及各种因素如何影响市场趋势的反转。文章包含一段视频解释,并接着将MQL5代码融入我们的程序中,以检测趋势反转、向我们发出警报,并根据市场条件采取相应行动。本文是在此前一系列文章基础上的扩展。

开发多币种 EA 交易(第 6 部分):自动选择实例组
在优化交易策略后,我们会收到一组参数。我们可以使用它们在一个 EA 中创建多个交易策略实例。以前,我们都是手动操作。在此,我们将尝试自动完成这一过程。

一步步学习如何利用公允价值缺口(FVG)或市场不平衡性来交易的策略:一种“聪明资金”的交易方法
基于公允价值缺口(FVG)交易策略的MQL5自动化交易算法创建与分步实施指南。这一教程旨在为无论是初学者还是经验丰富的交易者提供一个实用的EA创建指南。

MQL5 简介(第 6 部分):MQL5 中的数组函数新手指南 (二)
开始我们 MQL5 旅程的下一阶段。在这篇深入浅出、适合初学者的文章中,我们将探讨其余的数组函数,揭开复杂概念的神秘面纱,让您能够制定高效的交易策略。我们将讨论 ArrayPrint、ArrayInsert、ArraySize、ArrayRange、ArrarRemove、ArraySwap、ArrayReverse 和 ArraySort。利用这些基本的数组函数,提升您的算法交易专业知识。加入我们的精通 MQL5 之路吧!

算法交易中的风险管理器
本文的目标是证明在算法交易中使用风险管理器的必要性,并在一个单独的类中实现控制风险的策略,以便每个人都可以验证标准化的风险管理方法在金融市场日内交易和投资中的有效性。在本文中,我们将为算法交易创建一个风险管理类。本文是上一篇文章的延续,在前文中我们讨论了为手动交易创建风险管理器。

构建一个K线图趋势约束模型(第二部分):融合原生指标
这篇文章的重点在于如何利用MetaTrader 5的内置指标来甄别逆势信号。在上一篇文章的基础上,我们将进一步探讨如何使用MQL5代码将我们的想法最终用代码实现。

自定义指标(第一部份):在MQL5中逐步开发简单自定义指标的入门指南
学习如何使用MQL5创建自定义指标。这篇入门文章将指引您了解创建简单自定义指标的基础知识,并向初次接触这一有趣话题的MQL5程序员展示编写各种自定义指标的方法。

如何构建和优化基于波动率的交易系统(Chaikin volatility-CHV)
在本文中,我们将介绍另一个基于波动率的指标——蔡金波动率(Chaikin Volatility)。在了解到蔡金波动率的使用方法和构建方式之后,我们将学习如何构建自定义指标。我们将分享一些可用的简单策略,并对其进行测试,以了解哪个策略更优。

构建K线图趋势约束模型(第一部分):针对EA和技术指标
本文面向初学者和专业的MQL5开发者。它提供了一段代码,用于定义并限制信号生成指标仅在较长的时间框架的趋势中运行。通过这种方式,交易者可以通过融入更广泛的市场视角来增强他们的策略,从而可能产生更稳健和可靠的交易信号。

MQL5 中的高级变量和数据类型
不仅在 MQL5 编程中,在任何编程语言中,变量和数据类型都是非常重要的主题。MQL5 变量和数据类型可分为简单类型和高级类型。在这篇文章中,我们将识别并学习高级类型,因为我们在前一篇文章中已经提到过简单类型。

使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间
本文概述了一种使用每日范围对市场数据进行归一化并训练神经网络以增强市场预测的简单策略。开发的模型可以与现有的技术分析框架结合使用,也可以单独使用,以帮助预测整体市场方向。任何技术分析师都可以进一步完善本文中概述的框架,以开发适用于手动和自动交易策略的模型。

数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压
AdaBoost,一个强力的提升算法,设计用于提升 AI 模型的性能。AdaBoost 是 Adaptive Boosting 的缩写,是一种复杂的融合学习技术,可无缝集成较弱的学习器,增强它们的集体预测强度。

使用 Python 的深度学习 GRU 模型到使用 EA 的 ONNX,以及 GRU 与 LSTM 模型的比较
我们将指导您完成使用 Python 进行 DL 制作 GRU ONNX 模型的整个过程,最终创建一个用于交易的专家顾问 (EA),然后将 GRU 模型与 LSTM 模型进行比较。

如何利用 MQL5 创建简单的多币种智能交易系统(第 6 部分):两条 RSI 指标相互交叉
本文中的多货币智能系统是一款智能交易系统或交易机器人,它利用两条 RSI 指标线的交叉,即与慢速 RSI 与快速 RSI 两线相交。

MQL5 简介(第 5 部分):MQL5 数组函数入门指南
在第 5 部分中探索 MQL5 数组的世界,该部分专为绝对初学者设计。本文简化了复杂的编码概念,重点在于清晰性和包容性。加入我们的学习者社区,在这里解决问题,分享知识!

开发多币种 EA 交易(第 3 部分):架构修改
我们在开发多币种 EA 方面已经取得了一些进展,该 EA 有几个并行工作的策略。考虑到所积累的经验,让我们回顾一下我们解决方案的架构,并尝试在我们走得太远之前对其进行改进吧。

数据科学和机器学习(第 18 部分):掌握市场复杂性博弈,截断型 SVD 对比 NMF
截断型奇异值分解(SVD)和非负矩阵分解(NMF)都是降维技术。它们在制定数据驱动的交易策略方面都发挥着重要作用。探索降维的艺术,揭示洞察和优化定量分析,以明智的方式航行在错综复杂的金融市场。

构建和测试肯特纳通道交易系统
在本文中,我们将尝试使用金融市场中一个非常重要的概念 - 波动性 - 来构建交易系统。我们将在了解肯特纳通道(Keltner Channel)指标后提供一个基于该指标的交易系统,并介绍如何对其进行编码,以及如何根据简单的交易策略创建一个交易系统,然后在不同的资产上进行测试。

开发多币种 EA 交易(第 2 部分):过渡到交易策略的虚拟仓位
让我们继续开发多币种 EA,让多个策略并行工作。让我们尝试将与市场开仓相关的所有工作从策略级转移到管理策略的 EA 级。这些策略本身只进行虚拟交易,并不建立市场仓位。

开发多币种 EA 交易(第 1 部分):多种交易策略的协作
交易策略是多种多样的,因此,或许可以采用几种策略并行运作,以分散风险,提高交易结果的稳定性。但是,如果每个策略都作为单独的 EA 交易来实现,那么在一个交易账户上管理它们的工作就会变得更加困难。为了解决这个问题,在一个 EA 中实现不同交易策略的操作是合理的。

构建和测试 Aroon 交易系统
在本文中,我们将学习在了解了 Aroon 指标(阿隆指标)的基础知识和基于该指标构建交易系统的必要步骤之后,如何构建 Aroon 交易系统。建立这个交易系统后,我们将对其进行测试,看看它是否能盈利,还是需要进一步优化。

MetaTrader 5 和 R 进行算法交易新手指南
当我们揭开 R 和 MetaTrader 5 无缝结合的艺术面纱时,您将开始一场金融分析与算法交易的精彩探索。本文是您将 R 语言中的分析技巧与 MetaTrader 5 强大的交易功能连接起来的指南。

数据科学和机器学习(第 17 部分):摇钱树?外汇交易中随机森林的艺术与科学
探索算法炼金术的秘密,我们将引导您融会贯通如何在解码金融领域时将艺术性和精确性相结合。揭示随机森林如何将数据转化为预测能力,为驾驭股票市场的复杂场景提供独特的视角。加入我们的旅程,进入金融魔法的心脏地带,此处我们会揭开随机森林在塑造市场命运、及解锁赚钱机会之门方面之角色的神秘面纱

数据科学和机器学习(第 16 部分):全新面貌的决策树
在我们的数据科学和机器学习系列的最新一期中,深入到错综复杂的决策树世界。本文专为寻求策略洞察的交易者量身定制,全面回顾了决策树在分析市场趋势中所发挥的强大作用。探索这些算法树的根和分支,解锁它们的潜力,从而强化您的交易决策。加入我们,以全新的视角审视决策树,并探索它们如何在复杂的金融市场航行中成为您的盟友。

MQL5 简介(第 2 部分):浏览预定义变量、通用函数和控制流语句
通过我们的 MQL5 系列第二部分,开启一段启迪心灵的旅程。这些文章不仅是教程,还是通往魔法世界的大门,在那里,编程新手和魔法师将团结在一起。是什么让这段旅程变得如此神奇?我们的 MQL5 系列第二部分以令人耳目一新的简洁性脱颖而出,使复杂的概念变得通俗易懂。与我们互动,我们会回答您的问题,确保您获得丰富和个性化的学习体验。让我们建立一个社区,让理解 MQL5 成为每个人的冒险。欢迎来到魔法世界!

软件开发和 MQL5 中的设计范式(第 4 部分):行为范式 2
在本文中,我们将终结有关设计范式主题的系列文章,我们提到有三种类型的设计范式:创建型、结构型、和行为型。我们将终结行为类型的其余范式,其可以帮助设置对象之间的交互方法,令我们的代码更整洁。

软件开发和 MQL5 中的设计范式(第 3 部分):行为范式 1
来自设计范式文献的一篇新文章,我们将看到类型其一,即行为范式,从而理解我们如何有效地在所创建对象之间构建通信方法。通过完成这些行为范式,我们就能够理解创建和构建可重用、可扩展、经过测试的软件。

软件开发和 MQL5 中的设计模式(第 2 部分):结构模式
在了解了设计模式适用于 MQL5 和其他编程语言,并且对于开发人员开发可扩展、可靠的应用程序有多么重要之后,我们将在本文中继续介绍设计模式。我们将学习另一种类型的设计模式,即结构模式,了解如何利用我们所拥有的类组成更大的结构来设计系统。

如何利用 MQL5 创建简单的多币种智能交易系统(第 5 部分):凯尔特纳(Keltner)通道上的布林带 — 指标信号
本文中的多币种 EA 是一款智能交易系统或交易机器人,可以仅从一个品种图表中交易(开单、平单和管理订单,例如:尾随止损和止盈)多个品种(对)。在本文中,我们将用到来自两个指标的信号,在本例中为凯尔特纳(Keltner)通道上的布林带®。