大气云模型优化(ACMO):实战
在本文中,我们将继续深入研究大气云模型优化(ACMO)算法的实现。特别是,我们将讨论两个关键方面:云向低压区域的移动以及降雨模拟,包括液滴的初始化及其在云中的分布。我们还将研究其他在管理云的状态以及确保它们与环境相互作用方面发挥重要作用的方法。
开发多币种 EA 交易(第 17 部分):为真实交易做进一步准备
目前,我们的 EA 使用数据库来获取交易策略单个实例的初始化字符串。然而,这个数据库相当大,包含许多实际 EA 操作不需要的信息。让我们尝试在不强制连接到数据库的情况下确保 EA 的功能。
在MQL5中创建交易管理员面板(第三部分):通过视觉样式设计增强图形用户界面(1)
在本文中,我们将专注于使用MQL5为交易管理员面板的图形用户界面(GUI)进行视觉样式设计与优化。我们将探讨MQL5中可用的各种技术和功能,这些技术和功能允许对界面进行定制和优化,确保它既能满足交易者的需求,又能保持吸引人的外观。
构建蜡烛图趋势约束模型(第8部分):EA开发(II)
构思一个独立的EA。之前,我们讨论了一个基于指标的EA,它还与一个独立脚本配合,用于绘制风险与收益图形。今天,我们将讨论一个整合了所有功能的MQL5 EA的架构。
射箭算法(Archery Algorithm, AA)
本文详细探讨了受射箭启发的优化算法——射箭算法(Archery Algorithm, AA),重点介绍了如何使用轮盘赌法(roulette method)作为选择“箭矢”目标区域的机制。该方法允许评估解决方案的质量,并选择最有希望的位置进行进一步的探究。
随机优化和最优控制示例
这款名为SMOC(可能代表随机模型最优控制)的EA,是MetaTrader 5平台上一个较为先进的算法交易系统的简单示例。它结合了技术指标、模型预测控制以及动态风险管理来做出交易决策。该EA融入了自适应参数、基于波动率的仓位规模调整以及趋势分析,以优化其在不同市场条件下的表现。
细菌趋化优化(BCO)
本文介绍了细菌趋化优化(Bacterial Chemotaxis Optimization,简称 BCO)算法的原始版本及其改进版本。我们将详细探讨所有不同之处,特别关注 BCOm 的新版本,该版本简化了细菌的移动机制,减少了对位置历史的依赖,并且使用了比原始版本计算量更小的数学方法。我们还将进行测试并总结结果。
禁忌搜索(TS)
本文讨论了禁忌搜索(Tabu Search)算法,这是一种最早且最为人所知的元启发式方法之一。我们将详细探讨该算法的运行过程,从选择初始解并探索邻近选项开始,重点介绍使用禁忌表。文章涵盖了该算法的关键方面及其特性。
将您自己的 LLM 集成到 EA 中(第 4 部分):使用 GPU 训练自己的 LLM
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
数据科学和机器学习(第 28 部分):使用 AI 预测 EURUSD 的多个期货
众多人工智能模型的惯常做法是预测单一未来值。不过,在本文中,我们将钻研运用机器学习模型的更强大技术,即预测多个未来值。这种方式被称为多步预测,它令我们不仅能够预测明天的收盘价,还可以预测后天、及更久的收盘价。通过掌握多步骤预测,交易者和数据科学家能够获得更深入的见解,并制定更明智的决策,从而显著增强他们的预测能力和策略计划。
人工藻类算法(Artificial Algae Algorithm,AAA)
文章探讨了基于藻类微生物特征的人工藻类算法(AAA)。该算法包括螺旋运动、进化过程和适应性,使其能够解决优化问题。本文深入分析了AAA的工作原理及其在数学建模中的潜力,强调了自然与算法解决方案之间的联系。
数据科学与机器学习(第 20 部分):算法交易洞察,MQL5 中 LDA 与 PCA 之间的较量
在剖析 MQL5 交易环境中这些强大的降维技术的应用程序时,让我们揭示它们背后的秘密。深入探讨线性判别分析(LDA)和主成分分析(PCA)的细微差别,深入了解它们对策略开发和市场分析的影响。
使用 SMA 和 EMA 自动优化止盈和指标参数的示例
本文介绍了一种用于外汇交易的复杂 EA 交易,它能够将机器学习与技术分析相结合。它专注于交易苹果股票,具有自适应优化、风险管理和多策略的特点。回溯测试显示出良好的结果,盈利能力较高,但也有显著的回撤,表明还有进一步改进的潜力。
开发多币种 EA 交易系统(第 16 部分):不同报价历史对测试结果的影响
正在开发中的 EA 预计在与不同经纪商进行交易时都会表现出良好的效果。但目前我们一直使用 MetaQuotes 模拟账户的报价进行测试。让我们看看我们的 EA 是否准备好使用与测试和优化期间使用的报价不同的交易账户。
构建K线图趋势约束模型(第8部分):EA的开发(一)
在本文中,我们将基于前文创建的指标,开发我们的第一个由MQL5语言编写的EA。我们将涵盖实现自动化交易所需的所有功能,包括风险管理。这将极大地帮助用户从手动交易转变为自动化交易系统。
动物迁徙优化(AMO)算法
本文介绍了AMO算法,该算法通过模拟动物的季节性迁徙来寻找适合生存和繁殖的最优条件。AMO的主要特点包括使用拓扑邻域和概率更新机制,使得其易于实现,并且能够灵活应用于各种优化任务。
MQL5 简介(第 8 部分):初学者构建 EA 交易系统指南(二)
本文解决了MQL5论坛中常见的初学者问题,并演示了实用的解决方案。学习执行基本任务,如买卖、获取烛形价格以及管理自动交易方面,如交易限额、交易期限和盈亏阈值。获取分步指导,以增强您对 MQL5 中这些概念的理解和实现。
人工蜂巢算法(ABHA):测试与结果
在本文中,我们将继续深入探索人工蜂巢算法(ABHA),通过深入研究代码并探讨其余的方法。正如您可能还记得的那样,模型中的每只蜜蜂都被表示为一个独立的智能体,其行为取决于内部和外部信息以及动机状态。我们将在各种函数上测试该算法,并通过在评分表中呈现结果来总结测试效果。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLMs 开发和测试交易策略(一)- 微调
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
您应当知道的 MQL5 向导技术(第 23 部分):CNNs
卷积神经网络是另一种机器学习算法,倾向于专门将多维数据集分解为关键组成部分。我们看看典型情况下这是如何达成的,并探索为交易者在其它 MQL5 向导信号类中的可能应用。
在 MQL5 中创建交互式图形用户界面(第 2 部分):添加控制和响应
通过动态功能增强 MQL5 图形用户界面(GUI)面板,可以大大改善用户的交易体验。通过整合互动元素、悬停效果和实时数据更新,该面板成为现代交易者的强大工具。
在MetaTrader 5中实现基于EMA交叉的级联订单交易策略
本文介绍一个基于EMA交叉信号的自动交易算法,该算法适用于MetaTrader 5平台。文章详细阐述了在MQL5中开发一个EA所需的方方面面,以及在MetaTrader 5中进行测试的过程——从分析价格区间行为到风险管理。
构建蜡烛图趋势约束模型(第7部分):为EA开发优化我们的模型
在本文中,我们将详细探讨为开发专家顾问(EA)所准备的指标的相关内容。我们不仅会讨论如何对当前版本的指标进行进一步改进,以提升其准确性和功能,还会引入全新的功能来标记退出点,以弥补之前版本仅具备识别入场点功能的不足。
使用MQL5开发基于震荡区间突破策略的EA
本文概述了如何创建一个基于价格突破震荡区间进行交易的EA。通过识别震荡区间并设定突破水平,交易者可以基于这一策略自动化其交易决策。该EA旨在为交易者提供明确的入场和出场点,同时避免虚假突破。
MQL5 交易工具包(第 1 部分):开发仓位管理 EX5 库
了解如何创建面向开发人员的工具包,使用 MQL5 管理各种仓位操作。在本文中,我将演示如何创建一个函数库 (ex5),以执行从简单到高级的仓位管理操作,包括自动处理和报告使用 MQL5 处理仓位管理任务时出现的各种错误。
使用PatchTST机器学习算法预测未来24小时的价格走势
在本文中,我们将应用2023年发布的一种相对复杂的神经网络算法——PatchTST,来预测未来24小时的价格走势。我们将使用官方仓库的代码,并对其进行一些微小的修改,训练一个针对EURUSD(欧元兑美元)的模型,然后在Python和MQL5环境中应用该模型进行未来预测。
开发多币种 EA 交易(第 12 部分):开发自营交易级别风险管理器
在正在开发的 EA 中,我们已经有了某种控制回撤的机制。但它具有概率性,因为它是以历史价格数据的测试结果为基础的。因此,回撤有时会超过最大预期值(尽管概率很小)。让我们试着增加一种机制,以确保遵守指定的回撤水平。
MacOS 上的 MetaTrader 5
我们为 macOS 上的 MetaTrader 5 交易平台提供了专用的安装程序。它是一个功能齐全的向导,允许您以本机方式安装应用程序。安装程序执行所有必需的步骤:它识别您的系统,下载并安装最新的 Wine 版本,对其进行配置,然后在其中安装 MetaTrader。所有步骤都在自动模式下完成,您可以在安装后立即开始使用平台。
在MQL5中创建交互式图形用户界面(第1部分):制作面板
本文探讨了使用MetaQuotes Language 5(MQL5)设计和实施图形用户界面(GUI)面板的基本步骤。自定义实用面板通过简化常见任务并可视化重要的交易信息,增强了交易中的用户交互。通过创建自定义面板,交易者可以优化其工作流程,并在交易操作中节省时间。
数据科学与机器学习(第24部分):使用常规AI模型进行外汇时间序列预测
在外汇市场中,如果不了解过去的情况,就很难预测未来的趋势。很少有机器学习模型能够通过考虑过去的数据来做出未来预测。在本文中,我们将讨论如何使用经典(非时间序列)人工智能模型来战胜市场。