
数据科学与机器学习(第 06 部分):梯度下降
梯度下降在训练神经网络和许多机器学习算法中起着重要作用。 它是一种快速而智能的算法,尽管它的工作令人印象深刻,但它仍然被许多数据科学家误解,我们来看看有关它的全部。

从头开始开发智能交易系统(第 25 部分):提供系统健壮性(II)
在本文中,我们将朝着 EA 的性能迈出最后一步。 为此,请做好长时间阅读的准备。 为了令我们的智能交易系统可靠,我们首先从代码中删除不属于交易系统的所有内容。

从头开始开发智能交易系统(第 24 部分):提供系统健壮性(I)
在本文中,我们将令系统更加可靠,来确保健壮和安全的使用。 实现所需健壮性的途径之一是尝试尽可能多地重用代码,从而能在不同情况下不断对其进行测试。 但这只是其中一种方式。 另一个是采用 OOP。

学习如何基于标准偏差设计交易系统
此为我们该系列中的一篇新文章,介绍如何利用 MetaTrader 5 交易平台中最受欢迎的技术指标来设计交易系统。 在这篇新文章中,我们将学习如何运用标准偏差指标设计交易系统。

从头开始开发智能交易系统(第 22 部分):新订单系统 (V)
今天,我们将继续开发新订单系统。 实现一个新系统并非那么容易,因为我们经常会遇到各种问题令过程复杂化。 当这些问题出现时,我们必须停下来重新分析我们前进的方向。

学习如何基于 Williams PR 设计交易系统
本系列中的一篇新文章,介绍了如何依据 MQL5 最流行的技术指标为 MetaTrader 5 设计交易系统。 在本文中,我们将学习如何依据 Williams‘ %R 指标设计交易系统。

数据科学和机器学习(第 05 部分):决策树
决策树模仿人类的方式针对数据进行分类。 我们看看如何构建这棵树,并利用它们来分类和预测一些数据。 决策树算法的主要目标是将含有杂质的数据分离成纯节点或靠近节点。

从头开始开发智能交易系统(第 19 部分):新订单系统 (II)
在本文中,我们将开发一个“看看发生了什么”类型的图形订单系统。 请注意,我们这次不是从头开始,只不过我们将修改现有系统,在我们交易的资产图表上添加更多对象和事件。

学习如何基于交易量设计交易系统
这是我们系列文集中的新篇章,介绍如何基于最流行的技术指标设计交易系统。 本文将专门讨论交易量指标。 作为一个概念,交易量是金融市场交易中非常重要的因素之一,我们必须予以关注。 贯穿本文,我们将学习如何基于交易量指标设计一款简单的系统。

在莫斯科交易所(MOEX)里使用限价订单进行自动网格交易
本文研究针对 MetaTrader 5 平台开发 MQL5 智能交易系统(EA),旨在能在 MOEX 上操作。 该 EA 采用网格策略,面向 MetaTrader 5 终端,并在 MOEX 上进行交易。 EA 包括了依据止损和止盈平仓,以及在某些市场条件下取消挂单。

学习如何基于 MFI 设计交易系统
这篇新文章出自我们的系列文章,是有关基于最流行的技术指标设计交易系统,它研究了一个新的技术指标 — 资金流动性指数(MFI)。 我们将详细学习它,利用 MQL5 开发一个简单的交易系统,并在 MetaTrader 5 中执行它。

数据科学和机器学习(第 04 部分):预测当前股市崩盘
在本文中,我将尝试运用我们的逻辑模型,基于美国经济的基本面,来预测股市崩盘,我们将重点关注 NETFLIX 和苹果。利用 2019 年和 2020 年之前的股市崩盘,我们看看我们的模型在当前的厄运和低迷中会表现如何。

学习如何基于建仓/派发(AD)设计交易系统
欢迎阅读本系列的新文章,了解如何基于最流行的技术指标设计交易系统。 在本文中,我们将学习一种新的技术指标,称为建仓/派发指标,并了解如何基于简单的 AD 交易策略设计一款 MQL5 交易系统。

学习如何基于 OBV 设计交易系统
这是一篇新文章,将针对初学者继续我们的系列,介绍如何基于一些流行指标设计交易系统。 我们将学习一个新的指标,即能量潮(OBV),我们将学习如何使用并基于它来设计交易系统。

学习如何基于抛物线 SAR 设计交易系统
在本文中,我们将继续讲述如何基于最流行的指标设计交易系统。 在本文中,我们将详细学习抛物线 SAR 指标,以及如何运用一些简单的策略来设计用于 MetaTrader 5 的交易系统。


学习如何基于 ADX 设计交易系统
在本文中,我们将继续有关基于最流行指标设计交易系统的系列文章,这次我们将讨论平均方向指数(ADX)指标。 我们将详细学习该指标,从而能够更好地理解它,并将学习如何在简单策略里运用它。 通过深入学习,我们可以获得更多的认知,可以更好地运用它。

从头开始开发智能交易系统(第 11 部分):交叉订单系统
在本文中,我们将创建一个交叉订单系统。 有一种类型的资产让交易员的生涯变得非常困难 — 那就是期货合约。 但为什么令他们的职业生涯变得如此困难?

从头开始开发智能交易系统(第 7 部分):添加价格成交量(Volume)指标(I)
这是目前最强力的指标之一。 任何满怀信心尝试交易的人都必须在他们的图表上拥有这个指标。 最常用的指标都是那些喜欢在交易时“读磁带”的人所采用。 此外,而该指标则是那些交易时仅依据价格动作的人会采用。


了解如何设计基于轨道线(Envelopes)的交易系统
在本文中,我将与您分享一种如何进行波带交易的方法。 这一次,我们将研究轨道线(Envelopes),并将看到创建一款基于轨道线的策略是多么容易。

一张图表上的多个指标(第 05 部分):将 MetaTrader 5 转变为 RAD 系统(I)
有很多人不知道如何编程,但他们很有创造力,亦有杰出的想法。 然而,由于缺乏编程知识,他们无法实现这些想法。 我们一起看看如何利用 MetaTrader 5 平台本身创建图表交易,就如同它是一个 IDE。

一张图表上多个指标(第 04 部分):晋升为一款智能交易系统
在我之前的文章里,我已经解释了如何创建拥有多个子窗口的指标,在使用自定义指标时如此这般会变得很有趣。 这次,我们将看到如何为智能交易系统添加多个窗口。


学习如何设计一款布林带(Bollinger Bands)交易系统
在本文中,我们将学习布林带,这是交易界最流行的指标之一。 我们将研究技术分析,并看看如何设计一款基于布林带(Bollinger Bands)指标的算法交易系统。

交易中的数学:夏普(Sharpe)和索蒂诺(Sortino)比率
投资回报率是投资者和萌新交易员用来分析交易绩效的最明显指标。 专业交易者会采用更可靠的工具来分析策略,比如夏普(Sharpe)比率和索蒂诺(Sortino)比率等。

MQL5 中的矩阵和向量
运用特殊的数据类型“矩阵”和“向量”,可以创建非常贴合数学符号本意的代码。 运用这些方法,您可以避免创建嵌套循环,或在计算中分心记忆正确的数组索引。 因此,矩阵和向量方法的运用能为开发复杂程序提高可靠性和速度。

针对交易的组合数学和概率论(第五部分):曲线分析
在本文中,我决定进行一项研究,探讨将多重状态系统简化为双重状态系统的可能性。 本文的主要目的是分析并推导出有用的结论,这些结论也许有助于基于概率论的可伸缩交易算法的深入发展。 当然,这个话题会涉及到数学知识。 不过,根据之前文章的经验,我认为广谱信息比细节作用更大。


针对交易的组合数学和概率论(第四部分):伯努利(Bernoulli)逻辑
在本文中,我决定重点阐述著名的伯努利(Bernoulli)规划案,并展示如何用它来描述与交易相关的数据数组。 所有这些将被用来创建一个自适应的交易系统。 我们还将寻找一个更通用的算法,一个特例是伯努利公式,并查找能够运用它的应用。


为 MetaTrader 打造的高级 EA 构造器 - botbrains
在本文中,我们将展示 botbrains.app 的功能 — 一款无代码开发交易机器人的平台。 若要创建一款交易机器人,您无需编写任何代码 — 只需将必要的模块拖放到规划图上,设置它们的参数,并在它们之间建立连接。