Статьи об анализе данных и статистике в MQL5

icon

Статьи на темы математических моделей и законов вероятности заинтересуют многих трейдеров. Ведь математика положена в основу технических индикаторов, а знание статистики необходимо для анализа результатов торговли и разработки стратегий.

Читайте о нечеткой логике, цифровых фильтрах, рыночном профиле, картах Кохонена, нейронном газе и многих других инструментах, которые могут использованы для торговли.

Новая статья
последние | лучшие
preview
Модификация Алгоритма оптимизации динго — Dingo Optimization Algorithm M (DOAm)

Модификация Алгоритма оптимизации динго — Dingo Optimization Algorithm M (DOAm)

Представленная в статье авторская модификация алгоритма динго высоко подняла планку для поиска лучшего из лучших алгоритма оптимизации. Возможны ли еще более высокие результаты?
preview
Разработка инструментария для анализа движения цен (Часть 13): RSI Sentinel

Разработка инструментария для анализа движения цен (Часть 13): RSI Sentinel

Ценовую динамику можно эффективно анализировать, выявляя расхождения, при этом технические индикаторы, такие как RSI, подают важные подтверждающие сигналы. В статье ниже мы объясняем, как автоматизированный анализ дивергенции RSI может определять продолжение и разворот тренда, тем самым предоставляя ценную информацию о настроениях рынка.
preview
Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений

Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений

Компьютерное зрение для трейдинга, как работает и как разрабатывается по шагам. Создаем алгоритм распознавания RGB-изображений графиков цен с механизмом внимания и двунаправленным LSTM-слоем. В результате получаем рабочую модель прогнозирования цены евро-доллара с точностью до 55% на валидационном участке.
preview
Теория категорий (Часть 9): Действия моноидов

Теория категорий (Часть 9): Действия моноидов

Статья продолжает серию о реализации теории категорий в MQL5. В статье рассматриваются действия моноидов (monoid actions) как средство преобразования моноидов, описанных в предыдущей статье, для увеличения областей их применения.
preview
Торговый инструментарий MQL5 (Часть 8): Внедрение и использование EX5-библиотеки для управления историей в коде

Торговый инструментарий MQL5 (Часть 8): Внедрение и использование EX5-библиотеки для управления историей в коде

В заключительной статье этой серии вы узнаете, как легко импортировать и применять EX5-библиотеку для управления историей (History Manager) в исходном коде MQL5 для обработки истории сделок в вашем аккаунте MetaTrader 5. С помощью простых вызовов функций в MQL5, занимающих всего одну строку кода, вы сможете эффективно управлять своими торговыми данными и анализировать их. Кроме того, вы научитесь создавать различные скрипты для анализа истории сделок и разрабатывать советник на основе ценовых показателей в качестве практических примеров использования. Используемый в качестве примера советник применяет данные о ценах и библиотеку History Manager EX5 для принятия обоснованных торговых решений, корректировки объемов сделок и реализации стратегий восстановления на основе ранее закрытых сделок.
preview
Применение локализованного отбора признаков на Python и MQL5

Применение локализованного отбора признаков на Python и MQL5

В настоящей статье рассматривается алгоритм отбора признаков, представленный в статье "Выбор локальных признаков для классификации данных» ('Local Feature Selection for Data Classification') Наргеса Арманфарда и соавторов (Narges Armanfard et al.). Алгоритм реализован на Python для построения моделей бинарных классификаторов, которые могут быть интегрированы с приложениями MetaTrader 5 для логического вывода.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 43): Обучение с подкреплением с помощью SARSA

Возможности Мастера MQL5, которые вам нужно знать (Часть 43): Обучение с подкреплением с помощью SARSA

SARSA (State-Action-Reward-State-Action, состояние-действие-вознаграждение-состояние-действие) — еще один алгоритм, который можно использовать при реализации обучения с подкреплением. Рассмотрим, как можно реализовать этот алгоритм в качестве независимой модели (а не просто механизма обучения) в советниках, собранных в Мастере, аналогично тому, как мы это делали в случаях с Q-обучением и DQN.
preview
Разработка системы репликации (Часть 26): Проект советника — Класс C_Terminal

Разработка системы репликации (Часть 26): Проект советника — Класс C_Terminal

Мы уже можем начать создавать советника для использования в репликации/моделировании. Однако нам нужно нечто усовершенствованное, а не какое-то случайное решение. Несмотря на это, нас не должна пугать первоначальная сложность. Очень важно начать с чего-то, иначе в конечном итоге мы придем к тому, что размышляем о сложности задачи, даже не пытаясь ее преодолеть. Суть программирования именно в этом: преодолеть препятствия посредством изучения, тестирования и обширных исследований.
preview
Создание панели торгового администратора на MQL5 (Часть I): Создание интерфейса обмена сообщениями

Создание панели торгового администратора на MQL5 (Часть I): Создание интерфейса обмена сообщениями

В данной статье рассматривается создание интерфейса обмена сообщениями для MetaTrader 5, предназначенного для системных администраторов, чтобы облегчить общение с другими трейдерами непосредственно внутри платформы. Недавняя интеграция социальных платформ с MQL5 позволяет быстро транслировать сигнал по разным каналам. Представьте, что вы можете проверять отправленные сигналы одним щелчком мыши — либо "ДА", либо "НЕТ". Читайте дальше, чтобы узнать больше.
preview
Пример стохастической оптимизации и оптимального управления

Пример стохастической оптимизации и оптимального управления

Настоящий советник, получивший название SMOC (что, вероятно, означает оптимальное управление стохастической моделью (Stochastic Model Optimal Control), является простым примером передовой алгоритмической торговой системы для MetaTrader 5. Он использует комбинацию технических индикаторов, прогностического контроля моделей и динамического управления рисками для принятия торговых решений. Советник включает в себя адаптивные параметры, определение размера позиции на основе волатильности и анализ трендов для оптимизации его работы в изменяющихся рыночных условиях.
preview
Алгоритм искусственного атома —  Artificial Atom Algorithm (A3)

Алгоритм искусственного атома — Artificial Atom Algorithm (A3)

Реализация алгоритма A3 на MQL5 — метаэвристического метода оптимизации, вдохновленного химическими процессами. Всего 2 настраиваемых параметра, компактность и небольшая популяция обеспечивают высокую скорость работы при достаточном качестве решений.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 52): Осциллятор Accelerator

Возможности Мастера MQL5, которые вам нужно знать (Часть 52): Осциллятор Accelerator

Осциллятор ускорения (Accelerator Oscillator) — еще один индикатор Билла Вильямса, который отслеживает ускорение ценового импульса, а не только его темп. Хотя он во многом похож на осциллятор Awesome, который мы рассматривали в недавней статье, он стремится избежать эффектов запаздывания, концентрируясь на ускорении, а не только на скорости. Мы, как обычно, рассмотрим паттерны индикатора, а также их значение в торговле с помощью советника, собранного в Мастере.
preview
Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA): Продолжение

Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA): Продолжение

Продолжение исследования алгоритма хаотической оптимизации. Вторая часть статьи посвящена практическим аспектам реализации алгоритма, его тестированию и выводам.
preview
Диалектический поиск — Dialectic Search (DA)

Диалектический поиск — Dialectic Search (DA)

Представляем Диалектический Алгоритм (DA) — новый метод глобальной оптимизации, вдохновленный философской концепцией диалектики. Алгоритм использует уникальное разделение популяции на спекулятивных и практических мыслителей. Тестирование показывает впечатляющую производительность до 98% в задачах малой размерности и общую эффективность 57.95%. Статья объясняет эти показатели и представляет детальное описание алгоритма и результаты экспериментов на различных типах функций.
preview
Обучение нелинейного U-Transformer на остатках линейной авторегрессионной модели

Обучение нелинейного U-Transformer на остатках линейной авторегрессионной модели

Статья представляет инновационную гибридную систему для прогнозирования валютных курсов, которая сочетает линейную авторегрессионную модель с архитектурой U-Transformer для анализа остатков. Система автоматически переключается между источниками сигналов в зависимости от их качества и включает полноценную торговую логику с averaging/pyramiding стратегиями. Ключевое преимущество подхода заключается в том, что нейросеть обучается на остатках линейной модели, что упрощает задачу и снижает риск переобучения. Реализация выполнена полностью на MQL5 и готова к использованию в реальной торговле с автоматической адаптацией к изменяющимся рыночным условиям.
preview
Подробная информация о торговле на основе объема: Выход за рамки графиков OHLC

Подробная информация о торговле на основе объема: Выход за рамки графиков OHLC

Алгоритмическая торговая система, сочетающая анализ объема с методами машинного обучения, в частности с нейронными сетями LSTM. В отличие от традиционных торговых подходов, которые в первую очередь фокусируются на движении цен, эта система делает упор на паттернах объема и их производных для прогнозирования движений рынка. Методология включает в себя три основных компонента: анализ производных от объема (первые и вторые производные), прогнозы LSTM для паттернов объема и традиционные технические индикаторы.
preview
Алгоритм биржевого рынка — Exchange Market Algorithm (EMA)

Алгоритм биржевого рынка — Exchange Market Algorithm (EMA)

Статья посвящена подробному анализу алгоритма Exchange Market Algorithm (EMA), который вдохновлен поведением трейдеров на фондовом рынке. Алгоритм моделирует процесс торговли акциями, где участники рынка с разным уровнем успеха применяют различные стратегии для максимизации прибыли.
preview
Функции активации нейронов при обучении: ключ к быстрой сходимости?

Функции активации нейронов при обучении: ключ к быстрой сходимости?

В данной работе представлено исследование взаимодействия различных функций активации с алгоритмами оптимизации в контексте обучения нейронных сетей. Особое внимание уделяется сравнению классического ADAM и его популяционной версии при работе с широким спектром функций активации, включая осциллирующие функции ACON и Snake. Используя минималистичную архитектуру MLP (1-1-1) и единичный обучающий пример, производится изоляция влияния функций активации на процесс оптимизации от других факторов. Предложен подход к контролю весов сети через границы функций активации и механизма отражения весов, что позволяет избежать проблем с насыщением и застоем в обучении.
preview
Разработка системы репликации (Часть 55): Модуль управления

Разработка системы репликации (Часть 55): Модуль управления

В этой статье мы реализуем индикатор управления, чтобы его можно было интегрировать в разрабатываемую систему обмена сообщениями. Несмотря на то, что это не очень сложно, необходимо понять некоторые детали инициализации этого модуля. Представленный здесь материал предназначен исключительно для учебных целей. Ни в коем случае он не должен рассматриваться как приложение, целью которого не является изучение и освоение показанных концепций.
preview
Бильярдный алгоритм оптимизации — Billiards Optimization Algorithm (BOA)

Бильярдный алгоритм оптимизации — Billiards Optimization Algorithm (BOA)

Метод BOA, вдохновленный классической игрой в бильярд, моделирует процесс поиска оптимальных решений, как игру с шарами, стремящимися попасть в лузы, олицетворяющие наилучшие результаты. В данной статье мы рассмотрим основы работы BOA, его математическую модель и эффективность в решении различных оптимизационных задач.
preview
Причинно-следственный анализ временных рядов с помощью энтропии переноса

Причинно-следственный анализ временных рядов с помощью энтропии переноса

В этой статье обсудим, как можно применить статистические причинно-следственные связи при определении прогностических переменных. Мы рассмотрим связь между причинностью и энтропией переноса, а также представим код на MQL5 для обнаружения направленных переносов информации между двумя переменными.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 34): Эмбеддинг цены с нетрадиционной RBM

Возможности Мастера MQL5, которые вам нужно знать (Часть 34): Эмбеддинг цены с нетрадиционной RBM

Ограниченные машины Больцмана (Restricted Boltzmann Machines, RBM) — форма нейронной сети, разработанная в середине 1980-х годов, когда вычислительные ресурсы были непомерно дорогими. Вначале она опиралась на выборку Гиббса (Gibbs Sampling) и контрастивную дивергенцию (Contrastive Divergence) с целью уменьшения размерности или выявления скрытых вероятностей/свойств во входных обучающих наборах данных. Мы рассмотрим, как обратное распространение ошибки (backpropagation) может работать аналогичным образом, когда RBM "встраивает" (embeds) цены в прогнозирующий многослойный перцептрон.
preview
Бильярдный алгоритм оптимизации — Billiards Optimization Algorithm (BOA)

Бильярдный алгоритм оптимизации — Billiards Optimization Algorithm (BOA)

Метод BOA, вдохновленный классической игрой в бильярд, моделирует процесс поиска оптимальных решений, как игру с шарами, стремящимися попасть в лузы, олицетворяющие наилучшие результаты. В данной статье мы рассмотрим основы работы BOA, его математическую модель и эффективность в решении различных оптимизационных задач.
preview
Интеграция MQL5 с пакетами обработки данных (Часть 1): Расширенный анализ данных и статистическая обработка

Интеграция MQL5 с пакетами обработки данных (Часть 1): Расширенный анализ данных и статистическая обработка

Интеграция обеспечивает бесперебойный рабочий процесс, при котором необработанные финансовые данные из MQL5 можно импортировать в пакеты обработки данных, такие как Jupyter Lab, для расширенного анализа, включая статистическое тестирование.
preview
Алгоритм дифференциального поиска — Differential Search Algorithm (DSA)

Алгоритм дифференциального поиска — Differential Search Algorithm (DSA)

В статье рассматривается алгоритм дифференциального поиска DSA, имитирующий миграцию суперорганизма в поисках оптимальных условий обитания. Алгоритм использует гамма-распределение для генерации псевдо-стабильного блуждания и предлагает четыре стратегии выбора направления движения с тремя механизмами мутации координат. Какова будет производительность метода?
preview
Разработка инструментария для анализа движения цен (Часть 4): Советник Analytics Forecaster

Разработка инструментария для анализа движения цен (Часть 4): Советник Analytics Forecaster

Мы выходим за рамки простого просмотра проанализированных показателей на графиках и переходим к более широкой перспективе, которая включает интеграцию с Telegram. Это позволит отправлять важные результаты непосредственно на мобильное устройство через Telegram.
preview
Алгоритм эволюционного путешествия во времени — Time Evolution Travel Algorithm (TETA)

Алгоритм эволюционного путешествия во времени — Time Evolution Travel Algorithm (TETA)

Мой авторский алгоритм. В этой статье представлен Алгоритм Эволюционного Путешествия во Времени (TETA), вдохновлённый концепцией параллельных вселенных и потоков времени. Основная идея алгоритма заключается в том, что, хотя путешествие во времени в привычном понимании невозможно, мы можем выбирать последовательность событий, которые приводят к различным реальностям.
preview
От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (I)

От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (I)

Доступность новостей является критическим фактором при торговле в терминале MetaTrader 5. Несмотря на наличие множества новостных API, многие трейдеры сталкиваются с трудностями доступа к ним и их эффективной интеграции в свою торговую среду. В ходе настоящего обсуждения нашей целью является разработать оптимизированное решение, которое выводило бы новости непосредственно на график — там, где они больше всего нужны. Мы добьемся этого, создав советника «Заголовки новостей», который отслеживает и отображает обновления новостей в режиме реального времени из источников API.
preview
Интеграция MQL5 с пакетами обработки данных (Часть 2): Машинное обучение и предиктивная аналитика

Интеграция MQL5 с пакетами обработки данных (Часть 2): Машинное обучение и предиктивная аналитика

В нашей серии статей об интеграции MQL5 с пакетами обработки данных мы подробно рассматриваем мощное сочетание машинного обучения и предиктивного анализа. Мы изучим, как беспрепятственно объединить MQL5 с популярными библиотеками машинного обучения, чтобы создавать сложные прогностические модели финансовых рынков.
preview
Алгоритм оптимизации сновидениями — Dream Optimization Algorithm (DOA)

Алгоритм оптимизации сновидениями — Dream Optimization Algorithm (DOA)

Популяционный алгоритм оптимизации, вдохновленный спорным и малоизученным феноменом — механизмом человеческих сновидений. Группы агентов с разной "памятью", косинусоидальная модуляция движения и необычное распределение фаз 99/1 — узнайте, как эти особенности влияют на эффективность оптимизации ваших торговых стратегий.
preview
Экстремальная оптимизация — Extremal Optimization (EO)

Экстремальная оптимизация — Extremal Optimization (EO)

В данной статье рассматривается алгоритм Extremal Optimization (EO) — метод оптимизации, вдохновленный моделью самоорганизованной критичности Бака-Снеппена, где эволюция происходит через устранение наихудших компонентов системы. Модифицированная популяционная версия алгоритма демонстрирует отход от теоретических принципов в пользу практической эффективности, что приводит к созданию мощных вычислительных инструментов.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 35): Регрессия опорных векторов

Возможности Мастера MQL5, которые вам нужно знать (Часть 35): Регрессия опорных векторов

Регрессия опорных векторов — это идеалистический способ поиска функции или "гиперплоскости" (hyper-plane), который наилучшим образом описывает взаимосвязь между двумя наборами данных. Мы попытаемся использовать его при прогнозировании временных рядов в пользовательских классах Мастера MQL5.
preview
Анализ влияния солнечных и лунных циклов на цены валют

Анализ влияния солнечных и лунных циклов на цены валют

Что если лунные циклы и сезонные паттерны влияют на валютные рынки? Эта статья показывает, как перевести астрологические концепции на язык математики и машинного обучения. Я создал Python-систему с 88 признаками на основе астрономических циклов, обучил CatBoost на 15 годах данных EUR/USD и получил интригующие результаты. Код открыт, методы проверяемы, выводы неожиданны — древняя мудрость встречается с градиентным бустингом.
preview
Разработка инструментария для анализа движения цен (Часть 5): Советник Volatility Navigator

Разработка инструментария для анализа движения цен (Часть 5): Советник Volatility Navigator

Определить направление рынка может быть просто, но вот понять, когда входить на рынок, - гораздо более сложная задача. В этой статье серии "Разработка инструментария для анализа движения цен" я представлю еще один инструмент, который определяет точки входа и уровни стоп-лосса/тейк-профита. Для достижения этой цели использовался язык программирования MQL5.
preview
Разработка системы репликации (Часть 48): Концепции для понимания и осмысления

Разработка системы репликации (Часть 48): Концепции для понимания и осмысления

Как насчет изучения чего-то нового? В этой статье вы узнаете, как преобразовывать скрипты в сервисы, и почему полезно это делать.
preview
Разработка системы репликации (Часть 52): Всё усложняется (IV)

Разработка системы репликации (Часть 52): Всё усложняется (IV)

В этой статье мы изменим указатель мыши, чтобы иметь возможность взаимодействовать с индикатором управления, поскольку он работает нестабильно.
preview
Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Теория

Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Теория

Статья посвящена метаэвристическому алгоритму Atmosphere Clouds Model Optimization (ACMO), который моделирует поведение облаков для решения задач оптимизации. Алгоритм использует принципы генерации, движения и распространения облаков, адаптируясь к "погодным условиям" в пространстве решений. Статья раскрывает, как метеорологическая симуляция алгоритма находит оптимальные решения в сложном пространстве возможностей и подробно описывает этапы работы ACMO, включая подготовку "неба", рождение облаков, их перемещение и концентрацию дождя.
preview
Оптимизатор на основе экологического цикла — Ecological Cycle Optimizer (ECO)

Оптимизатор на основе экологического цикла — Ecological Cycle Optimizer (ECO)

Алгоритм ECO (Ecological Cycle Optimizer) представляет собой интересную метафору переноса экологического круговорота в область метаэвристической оптимизации. Идея разделения популяции на трофические уровни — продуцентов, травоядных, плотоядных, всеядных и редуцентов — создаёт иерархическую структуру поиска, где каждая группа вносит свой вклад в общий процесс оптимизации.
preview
Разработка системы репликации (Часть 45): Проект Chart Trade (IV)

Разработка системы репликации (Часть 45): Проект Chart Trade (IV)

Главное в этой статье — представление и объяснение класса C_ChartFloatingRAD. У нас есть индикатор Chart Trade, который работает довольно интересным образом. Как вы могли заметить, у нас на графике все еще достаточно небольшое количество объектов, и тем не менее, мы получили ожидаемое функционирование. Значения, присутствующие в индикаторе, можно редактировать. Вопрос в том, как это возможно? В этой статье все начнет проясняться.
preview
Определение справедливых курсов валют по ППС с помощью данных МВФ

Определение справедливых курсов валют по ППС с помощью данных МВФ

Создание системы анализа валютных курсов на основе паритета покупательной способности (ППС) на Python. Автор разработал алгоритм с 5 методами расчета справедливых курсов, используя данные МВФ. Практическое руководство по фундаментальному анализу валют, обработке экономических данных и интеграции с торговыми системами. Полный код в open source.