Статьи по машинному обучению в трейдинге

icon

Создание торговых роботов на основе искусственного интеллекта: нативная интеграция с Python, операции с матрицами и векторами, библиотеки математики и статистики и многое другое.

Узнайте, как использовать машинное обучение в трейдинге. Нейроны, перцептроны, сверточные и рекуррентные сети, модели прогнозирования — начните с основ и продвигайтесь к созданию собственного ИИ. Вы научитесь обучать и применять нейронные сети для алгоритмической торговли на финансовых рынках.

Новая статья
последние | лучшие
preview

Машинное обучение и Data Science (Часть 27): Сверточные нейросети (CNN) в торговых роботах для MetaTrader 5

Сверточные нейронные сети (CNN) используются для обнаружения закономерностей в изображениях и видео. При этом их применение намного шире. В этой статье мы рассмотрим применимость сверточных нейросетей для выявления ценных закономерностей на финансовых рынках и генерации торговых сигналов для торговых роботов в MetaTrader 5. Поговорим о том, как можно использовать этот метод глубокого машинного обучения для принятия обоснованных торговых решений.
preview

Машинное обучение и Data Science (Часть 26): Решающая битва в прогнозирование временных рядов — LSTM против GRU

В предыдущей статье мы рассмотрели простую рекуррентную нейронную сеть, которая, несмотря на свою неспособность понимать долгосрочные зависимости в данных, смогла разработать прибыльную стратегию. В этой статье мы поговорим о долгой кратковременной памяти (Long-Short Term Memoryю LSTM) и об управляемом рекуррентном блоке (Gated Recurrent Unit, GRU). Эти два подхода были разработаны для преодоления недостатков простой рекуррентной нейронной сети.
preview

Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (Окончание)

Мы завершаем реализацию фреймворка MacroHFT для высокочастотной торговли криптовалютами, который использует контекстно-зависимое обучение с подкреплением и памятью для адаптации к динамичным рыночным условиям. И в завершении данной статьи будет проведено тестирование реализованных подходов, на реальных исторических данных, для оценки их эффективности.
preview

Алгоритм циклического партеногенеза — Cyclic Parthenogenesis Algorithm (CPA)

В данной статье рассмотрим новый популяционный алгоритм оптимизации CPA (Cyclic Parthenogenesis Algorithm), вдохновленный уникальной репродуктивной стратегией тлей. Алгоритм сочетает два механизма размножения — партеногенез и половое, а также использует колониальную структуру популяции с возможностью миграции между колониями. Ключевыми особенностями алгоритма являются адаптивное переключение между различными стратегиями размножения и система обмена информацией между колониями через механизм перелета.
preview

Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (MacroHFT)

Предлагаю познакомиться с фреймворком MacroHFT, который применяет контекстно зависимое обучение с подкреплением и память, для улучшения решений в высокочастотной торговле криптовалютами, используя макроэкономические данные и адаптивные агенты.
preview

Нейросимвольные системы в алготрейдинге: Объединение символьных правил и нейронных сетей

Статья рассказывает об опыте разработки гибридной торговой системы, объединяющей классический технический анализ с нейронными сетями. Автор подробно разбирает архитектуру системы — от базового анализа паттернов и структуры нейросети до механизмов принятия торговых решений, делясь реальным кодом и практическими наблюдениями.
preview

Функции активации нейронов при обучении: ключ к быстрой сходимости?

В данной работе представлено исследование взаимодействия различных функций активации с алгоритмами оптимизации в контексте обучения нейронных сетей. Особое внимание уделяется сравнению классического ADAM и его популяционной версии при работе с широким спектром функций активации, включая осциллирующие функции ACON и Snake. Используя минималистичную архитектуру MLP (1-1-1) и единичный обучающий пример, производится изоляция влияния функций активации на процесс оптимизации от других факторов. Предложен подход к контролю весов сети через границы функций активации и механизма отражения весов, что позволяет избежать проблем с насыщением и застоем в обучении.
preview

Квантовые вычисления и трейдинг: Новый взгляд на прогнозы цен

В статье рассматривается инновационный подход к прогнозированию движения цен на финансовых рынках с использованием квантовых вычислений. Основное внимание уделяется применению алгоритма квантовой оценки фазы (QPE) для поиска продобразов ценовых паттернов, что позволяет значительно ускорить процесс анализа рыночных данных.
preview

Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (Окончание)

Продолжаем реализацию подходов, предложенных авторами фреймворка FinCon. FinCon является многоагентной системой, основанной на больших языковых моделях (LLM). Сегодня мы реализуем необходимые модули и проведем комплексное тестирование модели на реальных исторических данных.
preview

Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (FinCon)

Предлагаем познакомиться с фреймворком FinCon, который представляет собой многоагентную систему на основе больших языковых моделей (LLM). Фреймворк использует концептуальное вербальное подкрепление для улучшения принятия решений и управления рисками, что позволяет эффективно выполнять разнообразные финансовые задачи.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 28): Сети GAN в контексте темпа обучения

Возможности Мастера MQL5, которые вам нужно знать (Часть 28): Сети GAN в контексте темпа обучения

Темп обучения — это размер шага к цели обучения во многих алгоритмах машинного обучения. В статье мы изучим, какое влияние многочисленные форматы могут оказать на производительность генеративно-состязательной сети (Generative Adversarial Network, GAN) — разновидности нейронной сети, которую мы рассмотрели в одной из предыдущих статей.
preview
Анализируем двоичный код цен на бирже (Часть I): Новый взгляд на технический анализ

Анализируем двоичный код цен на бирже (Часть I): Новый взгляд на технический анализ

В этой статье представлен инновационный подход к техническому анализу, основанный на преобразовании ценовых движений в бинарный код. Автор демонстрирует, как различные аспекты рыночного поведения — от простых движений цены до сложных паттернов — можно закодировать в последовательности нулей и единиц.
preview
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)

Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)

Продолжаем работу по реализации алгоритмов мультимодального агента для финансовой торговли FinAgent, предназначенного для анализа мультимодальных данных рыночной динамики и исторических торговых паттернов.
preview
Машинное обучение и Data Science (Часть 25): Прогнозирование временных рядов на форексе с помощью рекуррентных нейросетей (RNN)

Машинное обучение и Data Science (Часть 25): Прогнозирование временных рядов на форексе с помощью рекуррентных нейросетей (RNN)

Рекуррентные нейронные сети (RNN) ценятся за способность использовать прошлую информацию для прогнозирования будущих событий. Такие прогностические возможности с успехом применяются в различных областях. В этой статье мы применим модели RNN для прогнозирования трендов на рынке Форекс. Посмотрим, смогут ли они повысить точность прогнозирования в трейдинге.
preview
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (FinAgent)

Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (FinAgent)

Предлагаем познакомиться с фреймворком мультимодального агента для финансовой торговли FinAgent, который предназначен для анализа данных разных типов, отражающих рыночную динамику и исторические торговые паттерны.
preview
Алгоритм Большого взрыва и Большого сжатия — BBBC (Big Bang - Big Crunch)

Алгоритм Большого взрыва и Большого сжатия — BBBC (Big Bang - Big Crunch)

В статье представлен метод Big Bang - Big Crunch, который имеет две ключевые фазы: циклическое создание случайных точек и их сжатие к оптимальному решению. Этот подход сочетает исследование и уточнение, позволяя постепенно находить лучшие решения и открывая новые возможности в области оптимизации.
preview
Индикатор силы и направления тренда на 3D-барах

Индикатор силы и направления тренда на 3D-барах

Рассмотрим новый подход к анализу рыночных трендов, основанный на трехмерной визуализации и тензорном анализе рыночной микроструктуры.
preview
Нейросети в трейдинге: Агент с многоуровневой памятью (Окончание)

Нейросети в трейдинге: Агент с многоуровневой памятью (Окончание)

Продолжаем начатую работу по созданию фреймворка FinMem, который использует подходы многоуровневой памяти, имитирующие когнитивные процессы человека. Это позволяет модели не только эффективно обрабатывать сложные финансовые данные, но и адаптироваться к новым сигналам, значительно повышая точность и результативность инвестиционных решений в условиях динамично изменяющихся рынков.
preview
Нейросети в трейдинге: Агент с многоуровневой памятью

Нейросети в трейдинге: Агент с многоуровневой памятью

Подходы многоуровневой памяти, имитирующие когнитивные процессы человека, позволяют обрабатывать сложные финансовые данные и адаптироваться к новым сигналам, что способствует повышению эффективности инвестиционных решений в условиях динамичных рынков.
preview
Использование алгоритма машинного обучения PatchTST для прогноза ценовых движений на следующие 24 часа

Использование алгоритма машинного обучения PatchTST для прогноза ценовых движений на следующие 24 часа

В этой статье мы применим относительно сложный нейросетевой алгоритм PatchTST, реализованный в 2023 году, для прогнозирования ценовых движений на ближайшие 24 часа. Воспользуемся официальным репозиторием, внесем небольшие изменения, обучим модель для EURUSD и применим ее для формирования будущих прогнозов на языке Python или MQL5.
preview
Нейросети в трейдинге: Модели с использованием вейвлет-преобразования и многозадачного внимания (Окончание)

Нейросети в трейдинге: Модели с использованием вейвлет-преобразования и многозадачного внимания (Окончание)

В предыдущей статье мы рассмотрели теоретические основы и приступили к реализации подходов фреймворка Multitask-Stockformer, объединяющего вейвлет-преобразование и многозадачную модель Self-Attention. Продолжаем реализацию алгоритмов указанного фреймворка и оценим их эффективность на реальных исторических данных.
preview
Нейросети в трейдинге: Модели с использованием вейвлет-преобразовании и многозадачного внимания

Нейросети в трейдинге: Модели с использованием вейвлет-преобразовании и многозадачного внимания

Предлагаем познакомиться с фреймворком объединяющим вейвлет-преобразование и многозадачную модель Self-Attention, направленную на повышение отзывчивости и точности прогнозирования в условиях нестабильности рынка. Вейвлет-преобразование позволяет разложить доходность активов на высокие и низкие частоты, тщательно фиксируя долгосрочные рыночные тенденции и краткосрочные колебания.
preview
Переосмысливаем классические стратегии на языке Python: Пересечения скользящих средних

Переосмысливаем классические стратегии на языке Python: Пересечения скользящих средних

В этой статье мы пересмотрим классическую стратегию пересечений скользящих средних для оценки ее текущей эффективности. Учитывая, сколько времени прошло с момента ее создания, исследуем потенциальные улучшения, которые ИИ может привнести в эту традиционную торговую стратегию. С помощью методов искусственного интеллекта мы постараемся применить передовые возможнности прогнозирования для потенциальной оптимизации точек входы и выхода из рынка, адаптировать их к меняющимся рыночным условиям и повысить общую эффективность по сравнению с традиционными подходами.
preview
Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (Окончание)

Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (Окончание)

Продолжаем рассмотрение гибридной торговой системы StockFormer, которая объединяет предиктивное кодирование и алгоритмы обучения с подкреплением для анализа финансовых временных рядов. Основой системы служат три ветви Transformer с механизмом Diversified Multi-Head Attention (DMH-Attn), позволяющим выявлять сложные паттерны и взаимосвязи между активами. Ранее мы познакомились с теоретическими аспектами фреймворка и реализовали механизмы DMH-Attn, а сегодня поговорим об архитектуре моделей и их обучении.
preview
Алгоритм черной дыры — Black Hole Algorithm (BHA)

Алгоритм черной дыры — Black Hole Algorithm (BHA)

Алгоритм черной дыры (Black Hole Algorithm, BHA) использует принципы гравитации черных дыр для оптимизации решений. В статье мы рассмотрим, как BHA притягивает лучшие решения, избегая локальных экстремумов, и почему этот алгоритм стал мощным инструментом для решения сложных задач. Узнайте, как простые идеи могут привести к впечатляющим результатам в мире оптимизации.
preview
Многомодульный торговый робот на Python и MQL5 (Часть I): Создание базовой архитектуры и первых модулей

Многомодульный торговый робот на Python и MQL5 (Часть I): Создание базовой архитектуры и первых модулей

Разрабатываем модульную торговую систему, объединяющую Python для анализа данных с MQL5 для исполнения сделок. Четыре независимых модуля параллельно следят за разными аспектами рынка: объемами, арбитражем, экономикой и рисками, а для анализа используют RandomForest с 400 деревьями. Особый упор сделан на риск-менеджмент, ведь без грамотного управления рисками даже самые продвинутые торговые алгоритмы бесполезны.
preview
Алгоритм Искусственного Племени (Artificial Tribe Algorithm, ATA)

Алгоритм Искусственного Племени (Artificial Tribe Algorithm, ATA)

В статье подробно рассматриваются ключевые компоненты и инновации алгоритма оптимизации ATA, представляющего собой эволюционный метод с уникальной двойной системой поведения, которая адаптируется в зависимости от ситуации. Используя скрещивание для углубленного исследования, и миграцию для поиска в случае застревания в локальных оптимумах, ATA сочетает в себе индивидуальное и социальное обучение.
preview
Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (StockFormer)

Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (StockFormer)

Предлагаем познакомиться с гибридной торговой системой StockFormer, которая объединят предиктивное кодирование и алгоритмы обучения с подкреплением (RL). Во фреймворке используются 3 ветви Transformer с интегрированным механизмом Diversified Multi-Head Attention (DMH-Attn), который улучшает ванильный модуль внимания за счет многоголового блока Feed-Forward, что позволяет захватывать разнообразные паттерны временных рядов в разных подпространствах.
preview
Советник на базе универсального аппроксиматора MLP

Советник на базе универсального аппроксиматора MLP

В статье представлен простой и доступный способ использования нейронной сети в торговом советнике, который не требует глубоких знаний в машинном обучении. Метод исключает нормализацию целевой функции и устраняет проблемы "взрыва весов" и "ступора сети", предлагая интуитивное обучение и наглядный контроль результатов.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 4): Обучение собственной LLM с помощью GPU

Добавляем пользовательскую LLM в торгового робота (Часть 4): Обучение собственной LLM с помощью GPU

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (Окончание)

Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (Окончание)

В предыдущей статье мы познакомились с мультиагентным адаптивным фреймворком MASAAT, который использует ансамбль агентов для перекрестного анализа мультимодального временного ряда в разных масштабах представления данных. И сегодня мы доведем до логического завершения начатую ранее работу по реализации подходов данного фреймворка средствами MQL5.
preview
Алгоритмическая торговля на основе 3D-паттернов разворота

Алгоритмическая торговля на основе 3D-паттернов разворота

Открываем новый мир автоматической торговли на 3D-барах. Как выглядит торговый робот на многомерных барах цены, и могут ли "желтые" кластеры 3D-баров предсказывать развороты трендов? Как выглядит трейдинг в множестве измерений?
preview
Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)

Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)

Предлагаем познакомиться с мультиагентной адаптивной структурой оптимизации финансового портфеля (MASAAT), которая объединяет механизмы внимания и анализ временных рядов. MASAAT формирует множество агентов, которые анализируют ценовые ряды и направленные изменения, позволяя выявлять значимые колебания цен активов на различных уровнях детализации.
preview
Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)

Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)

В предыдущей статье мы познакомились с мультиагентным адаптивным фреймворком MASA, который объединяет подходы обучения с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и рисками в турбулентных рыночных условиях. Нами был построен функционал отдельных агентов данного фреймворка, и в этой статье мы продолжим начатую работу, доведя её до логического завершения.
preview
Популяционный ADAM (Adaptive Moment Estimation)

Популяционный ADAM (Adaptive Moment Estimation)

В статье представлено превращение известного и популярного градиентного метода оптимизации ADAM в популяционный алгоритм и его модификация с введением гибридных особей. Новый подход позволяет создавать агентов, комбинирующих элементы успешных решений с использованием вероятностного распределения. Ключевое нововведение — формирование гибридных популяционных особей, которые адаптивно аккумулируют информацию от наиболее перспективных решений, повышая эффективность поиска в сложных многомерных пространствах.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 23): CNN

Возможности Мастера MQL5, которые вам нужно знать (Часть 23): CNN

Свёрточные нейронные сети (Convolutional Neural Networks, CNNs) — ещё один алгоритм машинного обучения, который, как правило, специализируется на разложении многомерных наборов данных на ключевые составные части. Мы рассмотрим принцип его работы и исследуем возможное применение для трейдеров в очередном классе сигналов Мастера MQL5.
preview
Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)

Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)

Предлагаю познакомиться с мультиагентным адаптивным фреймворком MASA, который объединяет обучение с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и управлением рисками в турбулентных рыночных условиях.
preview
Прогнозирование временных рядов с использованием нейронных сетей LSTM: Нормализация цены и токенизация времени

Прогнозирование временных рядов с использованием нейронных сетей LSTM: Нормализация цены и токенизация времени

В статье описывается простая стратегия нормализации рыночных данных с использованием дневного диапазона и обучения нейронной сети для улучшения рыночных прогнозов. Разработанные модели могут использоваться совместно с существующими системами технического анализа или отдельно для прогнозирования общего направления рынка. Структура, изложенная в этой статье, может быть дополнительно усовершенствована техническим аналитиком для разработки моделей, подходящих как для ручных, так и для автоматизированных торговых стратегий.
preview
Машинное обучение и Data Science (Часть 24): Прогнозирование временных рядов на форексе с помощью обычных ИИ-моделей

Машинное обучение и Data Science (Часть 24): Прогнозирование временных рядов на форексе с помощью обычных ИИ-моделей

На валютном рынке сложно предсказать будущие тренды, не имея представления о прошлом. Очень немногие модели машинного обучения способны делать прогнозы на будущее, учитывая прошлые значения. В этой статье мы посмотрим, как можно использовать классические (не временные ряды) модели искусственного интеллекта, чтобы понять рынок.
preview
Нелинейные регрессионные модели на бирже

Нелинейные регрессионные модели на бирже

Нелинейные регрессионные модели на бирже: реально ли прогнозировать финансовые рынки? Попробуем создать моделеь для прогноза цен на евро-доллар, и сделать на ее основе двух роботов - на Python и MQL5.