Desenvolvimento de robô em Python e MQL5 (Parte 1): Pré-processamento de dados
Esse será um guia detalhado sobre como desenvolver um robô de trading baseado em aprendizado de máquina. Realizaremos a coleta e preparação de dados e características. Para a execução do projeto, utilizaremos a linguagem de programação Python e bibliotecas, bem como a plataforma MetaTrader 5.
Ciência de Dados e Aprendizado de Máquina (Parte 07): Regressão Polinomial
Ao contrário da regressão linear, a regressão polinomial é um modelo flexível destinado a performar melhor em tarefas que o modelo de regressão linear não poderia lidar. Vamos descobrir como fazer modelos polinomiais em MQL5 e tirar algo positivo disso.
Resultados do MQL5 Market para o primeiro trimestre de 2013
Desde sua fundação, a loja de robôs de negociação e indicadores técnicos MQL5 Market já atraiu mais de 250 desenvolvedores que publicaram 580 produtos. O primeiro trimestre de 2013 acabou se tornando de grande sucesso para alguns vendedores do MQL5 Market que conseguiram ganhar bons lucros vendendo seus produtos.
Desenvolvendo um EA de negociação do zero (Parte 23): Um novo sistema de ordens (VI)
Deixando o sistema de ordens mais fluido. Aqui irei mostrar como e onde mudar no código para se ter algo mais fluído, onde você pode modificar os limites da posição muito mais rapidamente.
Aprendendo a construindo um EA que opera de forma automática (Parte 06): Tipos de contas (I)
Aprenda como criar um EA que opera de forma automática, isto de forma simples e o mais seguro possível. Nosso EA, até o momento consegue trabalhar, em qualquer tipo de situação, mas para torná-lo automatizado, ele não está adequado, precisamos fazer algumas coisas.
Como desenvolver um sistema de negociação baseado no indicador Gator Oscillator
Um novo artigo em nossa série sobre como aprender a desenvolver um sistema de negociação baseado nos indicadores técnicos mais populares será sobre o indicador técnico Gator Oscillator e como criar um sistema de negociação por meio de estratégias simples.
Trabalhando com séries temporais na biblioteca DoEasy (Parte 47): indicadores padrão multiperíodos multissímbolos
Neste artigo começaremos a desenvolver métodos para trabalhar com indicadores padrão, o que nos permitirá criar indicadores multissímbolos e multiperíodos padrão. Também adicionaremos o evento "Barras ausentes" às classes das séries temporais e descarregaremos o código do programa principal movendo as funções de preparação da biblioteca para a classe CEngine.
O MQL5 Market está fazendo um ano de idade
Já passou um ano desde o lançamento das vendas no Mercado MQL5. Foi um ano de trabalho duro, que transformou o novo serviço na maior loja de robôs de negociação e de indicadores técnicos para a plataforma MetaTrader 5.
Desenvolvendo um sistema de Replay (Parte 32): Sistema de Ordens (I)
De todas as coisas desenvolvidas até aqui. Esta com toda a certeza, vocês também irão notar, e com o tempo irão concordar, que é a mais desafiadora de todas. O que temos de fazer é algo simples. Fazer com que o nosso sistema, simule o que um servidor de negociação efetua na prática. Isto de ter que implementar uma forma de simular, exatamente o que seria feito, pelo servidor de negociação, parece simples. Pelo menos nas palavras. Mas precisamos fazer isto de uma maneira, que para o usuário do sistema de replay / simulação, tudo venha a acontecer, de forma o mais invisível, ou transparente, possível.
Como desenvolver um sistema de negociação baseado no indicador Williams PR
Bem-vindo a este novo artigo em nossa série sobre como aprender a desenvolver um sistema de negociação com base nos indicadores técnicos mais populares da MQL5. Neste artigo, nós aprenderemos como desenvolver um sistema de negociação pelo indicador %R de Williams.
Teste e otimização de estratégias para opções binárias no MetaTrader 5
Testamos e otimizamos estratégias de opções binárias no MetaTrader 5.
Ciência de Dados e Aprendizado de Máquina (Parte 02): Regressão Logística
A classificação de dados é uma coisa crucial para um algotrader e um programador. Neste artigo, nós vamos nos concentrar em um dos algoritmos de classificação logística que provavelmente podem nos ajudar a identificar os Sims ou Nãos, as Altas e Baixas, Compras e Vendas.
Trabalhando com preços e sinais na biblioteca DoEasy (Parte 65): coleção de livros de ofertas e classe para trabalhar com sinais MQL5.com
Neste artigo, criaremos uma classe-coleção de livros de ofertas para todos os símbolos e começaremos a desenvolver a funcionalidade para trabalhar com o serviço de sinais MQL5.com - criaremos uma classe objeto-sinal.
Robô de trading multimódulo em Python e MQL5 (Parte I): Criando a arquitetura básica e os primeiros módulos
Estamos desenvolvendo um sistema de trading modular que combina Python para análise de dados com MQL5 para execução de ordens. Quatro módulos independentes monitoram paralelamente diferentes aspectos do mercado: volumes, arbitragem, economia e riscos, utilizando RandomForest com 400 árvores para análise. É dado um foco especial no gerenciamento de risco, pois sem uma gestão adequada, até os algoritmos de trading mais avançados tornam-se inúteis.
Ciência de Dados e Aprendizado de Máquina (Parte 06): Gradiente Descendente
O gradiente descendente desempenha um papel significativo no treinamento das redes neurais e muitos algoritmos de aprendizado de máquina. Ele é um algoritmo rápido e inteligente, apesar do seu trabalho impressionante, ele ainda é mal interpretado por muitos cientistas de dados, vamos ver do que ele se trata.
Modelo de regressão universal para previsão de preços do mercado (Parte 2): funções de processos transitórios naturais, sociais e de origem tecnológica
Este artigo é uma continuação lógica do anterior e é escrito para destacar suas conclusões ao longo da década seguinte à sua publicação, no que diz respeito às três funções de processos dinâmicos transitórios que descrevem os padrões de mudança de preços de mercado.
Melhore os gráficos de negociação com uma interface gráfica interativa baseada em MQL5 (Parte III): Interface de negociação simples e móvel
Nesta série de artigos, exploramos a integração de interfaces gráficas interativas em painéis de negociação móveis no MQL5. Na terceira parte, usamos os desenvolvimentos das partes anteriores para transformar painéis de negociação estáticos em dinâmicos.
Redes neurais de maneira fácil (Parte 43): Dominando habilidades sem função de recompensa
O problema com o aprendizado por reforço é a necessidade de definir uma função de recompensa, que pode ser complexa ou difícil de formular, porém abordagens baseadas no tipo de ação e na exploração do ambiente que permitem que as habilidades sejam aprendidas sem uma função de recompensa explícita estão sendo exploradas para resolver esse problema.
Explorando a magia dos períodos de negociação com o auxílio do Frames Analyzer
Bem, o Frames Analyzer é uma ferramenta para analisar quadros de otimização durante o processo de otimização de parâmetros quer seja no testador de estratégia ou fora do mesmo. Ele permite ler arquivos MQD ou bancos de dados criados após a otimização de parâmetros e compartilhar esses resultados com outros usuários da ferramenta. Ele é projetado para auxiliar a melhorar estratégias de negociação conjuntamente. Adicionalmente, é bom mencionar que quadro de otimização é um conjunto de dados que contém informações sobre as condições de mercado em um determinado momento, como preços, volumes, indicadores técnicos, entre outros, que são usados para avaliar e comparar a eficácia de diferentes estratégias de negociação.
Desenvolvendo um EA de negociação do zero (Parte 20): Um novo sistema de ordens (III)
Vamos continuar a implementação do novo sistema de ordens . A criação deste sistema é algo que demanda um bom domínio do MQL5, além de entender como de fato a plataforma MetaTrader 5 funciona e os recursos que ela nos fornece.
Como desenvolver um sistema de negociação baseado no indicador Desvio Padrão
Aqui está um novo artigo em nossa série sobre como desenvolver um sistema de negociação pelos indicadores técnicos mais populares na plataforma de negociação MetaTrader 5. Neste novo artigo, nós aprenderemos como desenvolver um sistema de negociação pelo indicador Desvio Padrão.
Resultados da MetaTrader AppStore para o terceiro trimestre de 2013
Outro trimestre do ano se passou e nós decidimos resumir seus resultados para a MetaTrader AppStore - a maior loja de robôs comerciais e indicadores técnicos para plataformas MetaTrader. Mais de 500 desenvolvedores colocaram mais de 200 produtos no mercado até o final do trimestre reportado.
Ciência de Dados e Aprendizado de Máquina (Parte 04): Previsão de um crash no mercado de ações
Neste artigo, eu tentarei usar nosso modelo logístico para prever o crash do mercado de ações com base nos fundamentos da economia dos EUA, nos concentraremos nas ações do NETFLIX e da APPLE, usando os crashes anteriores do mercado de 2019 e 2020, vamos ver como nosso modelo se comportará nas atuais desgraças e tristezas.
Como desenvolver um sistema de negociação baseado no indicador Fractais
Aqui está um novo artigo da nossa série sobre como projetar um sistema de negociação com base nos indicadores técnicos mais populares. Nós aprenderemos um novo indicador que é o indicador Fractais e aprenderemos como desenvolver um sistema de negociação baseado nele para ser executado na plataforma MetaTrader 5.
Desenvolvendo um EA de negociação do zero (Parte 26): Em direção ao futuro (I)
Vamos levar nosso sistema de ordens para um outro patamar, mas antes temos algumas coisas a resolver. O problema é que existem questões que são dependentes de como você deseja operar e que tipo de coisa você estará fazendo no momento em que estiver operando.
Trabalhando com preços na biblioteca DoEasy (Parte 64): livro de ofertas, classes do objeto-instantâneo e objeto-série de instantâneos do livro de ofertas
Neste artigo, criaremos duas classes (a do objeto-instantânea do livro de ofertas e a do objeto-série dos instantâneos do livro de ofertas) e testaremos a criação de uma série de dados do livro de ofertas.
Melhore seus gráficos de negociação com uma GUI interativa baseada em MQL5 (Parte I): GUI móvel (II)
Libere todo o poder da representação de dados dinâmicos em suas estratégias de negociação ou utilitários com o nosso guia detalhado para desenvolver uma GUI móvel em MQL5. Mergulhe nos princípios fundamentais da programação orientada a objetos e aprenda a desenvolver e usar de forma fácil e eficiente uma ou mais GUIs móveis em um único gráfico.
Tudo o que você precisa saber sobre a estrutura de um programa MQL5
Qualquer programa em qualquer linguagem de programação possui uma estrutura específica. Neste artigo, você aprenderá os componentes básicos da estrutura de um programa na linguagem MQL5, o que pode ser extremamente útil ao criar um sistema de negociação ou uma ferramenta de negociação para o MetaTrader 5.
Resultados do MQL5 Market para o segundo trimestre de 2013
Operando com sucesso a um ano e meio, o MQL5 Market se tornou a maior loja de estratégias de negócios e indicadores técnicos de negociadores. Ele oferece cerca de 800 aplicações fornecidas por 350 desenvolvedores de todo o mundo. Mais de 100.000 programas de negócio já foram comprados e baixados por negociantes para os terminais do MetaTrader 5.
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 05): cadeias de Markov
As cadeias de Markov são uma poderosa ferramenta matemática que pode ser usada para modelar e prever dados de séries temporais em vários campos, incluindo finanças. Na modelagem e previsão de séries temporais financeiras, as cadeias de Markov são frequentemente usadas para modelar a evolução de ativos financeiros ao longo do tempo, ativo esses como preços de ações ou pares de moedas. Uma das principais vantagens dos modelos das cadeias de Markov é sua simplicidade e facilidade de uso.
Redes neurais de retropropagação em matrizes MQL5
Este artigo trata da teoria e prática do uso do algoritmo de retropropagação de erros no MQL5 através de matrizes. Oferecemos classes prontas e exemplos de scripts, indicadores e EAs.
Desenvolvimento de um sistema de negociação baseado no indicador Ichimoku
Neste artigo continuamos a série em que aprendemos a construir sistemas de negociação com base nos indicadores mais populares. Desta vez vamos falar sobre o indicador Ichimoku e criar um sistema de negociação baseado nos seus valores.
Desenvolvimento de um indicador Heiken Ashi personalizado usando MQL5
Neste artigo, aprenderemos a criar nosso próprio indicador usando MQL5 com base em nossas preferências, que será usado no MetaTrader 5 para interpretar gráficos ou como parte de Expert Advisors.
Como desenvolver um sistema de negociação baseado no indicador Acumulação/Distribuição (AD)
Bem-vindo ao novo artigo da nossa série sobre como aprender a projetar sistemas de negociação com base nos indicadores técnicos mais populares. Neste artigo, nós aprenderemos sobre um novo indicador técnico chamado Acumulação/Distribuição e descobriremos como desenvolver um sistema de negociação em MQL5 baseado nas estratégias simples com o AD.
Ciência de Dados e Aprendizado de Máquina (Parte 13): Analisando o mercado financeiro usando a análise de componentes principais (PCA)
Vamos tentar melhorar qualitativamente nossa análise dos mercados financeiros usando a análise de componentes principais (PCA). Aprenderemos como essa técnica pode ajudar a identificar padrões ocultos nos dados, identificar tendências de mercado ocultas e otimizar estratégias de investimento. Neste artigo, veremos como o PCA oferece uma nova perspectiva para a análise de dados financeiros complexos, ajudando-nos a ver informações que não percebemos usando abordagens tradicionais. Veremos se sua aplicação aos dados do mercado financeiro proporciona uma vantagem sobre a concorrência e nos ajuda a ficar um passo à frente.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 11): Nascimento do SIMULADOR (I)
Para poder usar dados que formam barras, precisamos abandonar o replay e começar a desenvolver um simulador. Não sabemos como ela foi criada. Estaremos utilizando as barras de 1 minuto, justamente pelo motivo, de elas nos darem, um nível de complexidade mínimo.
Esperança moral na negociação
Este artigo trata da esperança moral. Veremos vários exemplos de como ela é aplicada na negociação e quais resultados podem ser obtidos com ela.
Aprendendo a construindo um Expert Advisor que opera de forma automática (Parte 11): Automação (III)
Um sistema automático sem segurança não irá dar certo. Mas segurança não nasce sem que entendamos adequadamente algumas coisas. Neste artigo vamos entender é tão difícil alcançar a segurança máxima em sistemas automáticos.
Criando um Expert Advisor Integrado MQL5-Telegram (Parte 5): Enviando Comandos do Telegram para o MQL5 e Recebendo Respostas em Tempo Real
Neste artigo, criamos diversas classes para facilitar a comunicação em tempo real entre o MQL5 e o Telegram. Focamos na obtenção de comandos a partir do Telegram, sua decodificação e interpretação, e no envio de respostas adequadas de volta. Ao final, garantimos que essas interações estejam efetivamente testadas e operacionais dentro do ambiente de negociação.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 18): Tiquete e mais tiquetes (II)
Neste, fica extremamente claro, que as métricas, estão muito longe, do tempo ideal de confecção das barras de 1 minuto. Assim então, a primeira coisa que de fato iremos corrigir, será justamente isto. Corrigir a questão da temporização, não é algo complicado. Por mais incrível que possa parecer, é na verdade até bem simples de ser feito. Porém não fiz a correção no artigo anterior, por que lá o desejo era explicar, como fazer para jogar os dados de tickets, que estavam sendo usados para gerar as barras de 1 minuto no gráfico, para dentro da janela de observação de mercado.