Adicionando um LLM personalizado a um robô investidor (Parte 1): Implantação de equipamentos e ambiente
Os modelos de linguagem são uma parte importante da inteligência artificial que evolui rapidamente, por isso devemos pensar em como integrar LLMs poderosos em nossa negociação algorítmica. Para a maioria das pessoas, é desafiador configurar esses poderosos modelos de acordo com suas necessidades, implementá-los localmente e, em seguida, aplicá-los à negociação algorítmica. Esta série de artigos explorará uma abordagem passo a passo para alcançar esse objetivo.
Redes neurais de maneira fácil (Parte 27): Aprendizado Q profundo (DQN)
Continuamos nosso estudo sobre aprendizado por reforço. E, neste artigo, vamos nos familiarizar com o método de aprendizado Q profundo. Com esse método, a equipe do DeepMind criou um modelo que pode superar um humano ao jogar jogos do Atari. Acho que será útil avaliar as possibilidades de tal tecnologia para resolver problemas de negociação.
Como desenvolver um sistema de negociação baseado no indicador Índice de Força
Seja bem-vindo a este novo artigo em nossa série sobre como desenvolver um sistema de negociação com base no indicador técnico mais popular. Neste artigo, nós aprenderemos sobre um novo indicador técnico e como criar um sistema de negociação usando o indicador Índice de Força.
Desenvolvendo um sistema de Replay (Parte 46): Projeto do Chart Trade (V)
Cansado de perder tempo procurando aquele arquivo, que é preciso para fazer a sua aplicação funcionar ?!?! Que tal embutir tudo no executável ? Assim você nunca irá perder tempo procurando as coisas. Sei que muitos fazem uso, exatamente daquela forma de distribuir e guardar as coisas. Mas existe uma maneira bem mais adequada. Pelo menos no que diz respeito a distribuição de executáveis e armazenamento dos mesmos. A forma que irei explicar aqui, pode vim a lhe ser de grande ajuda. Já que você pode usar o próprio MetaTrader 5 como sendo um grande ajudante, assim como o MQL5. Não é algo lá tão complexo, ou difícil de ser entendido.
O modelo de movimento de preços e suas principais disposições (Parte 3): Cálculo dos parâmetros ótimos para negociação em bolsa
Dentro da abordagem de engenharia desenvolvida pelo autor, baseada na teoria da probabilidade, são determinadas as condições para abrir uma posição lucrativa e calculados os valores ótimos - maximizadores do lucro - para o take profit e o stop loss.
Gerenciador de riscos para trading algorítmico
Os objetivos deste artigo são: demonstrar a necessidade obrigatória de um gerenciador de riscos, adaptar os princípios de controle de risco para trading algorítmico em uma classe específica, permitindo que todos possam comprovar, de forma independente, a eficácia da abordagem de normalização de risco no day trading e em investimentos nos mercados financeiros. Neste artigo, exploraremos em detalhes a criação de uma classe de gerenciador de riscos para trading algorítmico, continuando o tópico abordado no artigo anterior sobre o gerenciador de riscos para trading manual.
Ciência de Dados e Aprendizado de Máquina (Parte 14): aplicando mapas de Kohonen nos mercados
Deseja descobrir uma nova metodologia de negociação que facilite a orientação em mercados complexos e voláteis? Explore os mapas de Kohonen - uma versão inovadora de redes neurais artificiais, capazes de identificar regularidades e tendências ocultas nos dados do mercado. Neste texto, analisaremos a funcionalidade dos mapas de Kohonen e a forma de utilizá-los na elaboração de estratégias de negociação eficazes. Estou convencido de que esta abordagem inédita será do interesse de traders novatos e experientes.
Desenvolvendo um sistema de Replay (Parte 29): Projeto Expert Advisor — Classe C_Mouse (III)
Agora que a classe C_Mouse foi melhorada. Podemos focar em criar uma classe que será usada para promover uma base completamente diferente de estudos. Mas como expliquei no inicio do artigo, não iremos usar herança ou polimorfismo para gerar esta nova classe. Iremos modificar, ou melhor dizendo, agregar alguns objetos novos a linha de preço. Isto neste primeiro momento, no próximo artigo mostrarei como modificar os estudos. Mas faremos isto sem mexer no código da classe C_Mouse. Sei que na pratica, isto seria mais simples ser feito usando herança ou polimorfismo. No entanto, existem técnicas diferentes para se conseguir a mesma coisa.
Desenvolvendo um sistema de Replay (Parte 27): Projeto Expert Advisor — Classe C_Mouse (I)
Neste artigo irá nascer a classe C_Mouse. Esta foi pensada de maneira que a programação, seja feita no mais alto nível quanto for possível ser feita. Mas dizer que trabalharemos em alto, ou baixo nível, nada tem haver com questões de colocarmos palavrões ou chavões no meio do código. Longe disto. Trabalhar em alto nível ou de baixo nível, quando se fala em programação, diz o quanto o programa pode ser mais simples ou mais difícil de ser lido por outro programador.
Ciência de dados e aprendizado de máquina (Parte 11): Classificador Naive Bayes e teoria da probabilidade na negociação
A negociação com base em probabilidades pode ser comparada a caminhar sobre uma corda bamba - ela requer precisão, equilíbrio e uma compreensão clara do risco envolvido. No mundo do trading, a probabilidade é fundamental. É ela que determina o resultado: sucesso ou fracasso, lucro ou prejuízo. Ao aproveitar as possibilidades da probabilidade, os traders podem tomar decisões mais fundamentadas, gerenciar os riscos de maneira mais eficiente e alcançar seus objetivos financeiros. Não importa se você é um investidor experiente ou um trader iniciante, entender a probabilidade pode ser a chave para desbloquear seu potencial de negociação. Neste artigo, exploraremos o fascinante mundo do trading baseado em probabilidades e mostraremos como levar seu modo de negociar a um nível superior.
Como desenvolver um sistema de negociação baseado no indicador Oscilador de Chaikin
Bem-vindo ao nosso novo artigo da série sobre como desenvolver um sistema de negociação com base nos indicadores técnico mais populares. Através deste novo artigo, nós aprenderemos como desenvolver um sistema de negociação pelo indicador Oscilador de Chaikin.
Desenvolvendo um sistema de Replay (Parte 55): Módulo de controle
Neste artigo iremos implementar o indicador de controle de forma que ele possa o sistema de mensagens que está sendo implementado. Apesar de não ser algo muito complexo de ser feito, você precisa entender alguns detalhes referentes a como fazer a inicialização deste módulo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 20): FOREX (I)
intenção inicial deste artigo, não será cobrir todas as características do FOREX. Mas sim e apenas, adequar o sistema, de forma que você possa fazer no mínimo, um replay de mercado. Já a simulação, ficará para um outro momento. No entanto, caso você não os tenha os ticks, e tenha apenas as barras. Pode com algum trabalho, simular possíveis transações, que possam ter ocorrido no FOREX. Isto até que eu mostre como adaptar o simulador. O fato de se tentar trabalhar com dados vindos do FOREX, dentro do sistema, sem que ele seja modificado. Faz com que ocorra erros de range.
Trabalhando com séries temporais na biblioteca DoEasy (Parte 53): classe do indicador base abstrato
Neste artigo, veremos a criação de uma classe de indicador abstrato que será posteriormente usada como uma classe base para a criação de objetos de indicadores padrão e personalizados da biblioteca.
Redes neurais de maneira fácil (Parte 50): Soft Actor-Critic (otimização do modelo)
No artigo anterior, implementamos o algoritmo Soft Actor-Critic, mas não conseguimos treinar um modelo lucrativo. Neste artigo, vamos realizar a otimização do modelo previamente criado para obter os resultados desejados a nível de seu funcionamento.
Redes neurais de maneira fácil (Parte 46): Aprendizado por reforço condicionado a metas (GCRL)
Convido você a conhecer mais uma abordagem no campo do aprendizado por reforço. É chamada de aprendizado por reforço condicionado a metas, conhecida pela sigla GCRL (Goal-conditioned reinforcement learning). Nessa abordagem, o agente é treinado para alcançar diferentes metas em cenários específicos.
Redes neurais de maneira fácil (Parte 18): Regras de associação
Como continuação desta série, gostaria de apresentar a vocês outro tipo de tarefa dos métodos de aprendizado não supervisionado, em particular a busca de regras de associação. Este tipo de tarefa foi usado pela primeira vez no varejo para analisar cestas de compras. Neste artigo falaremos sobre as possibilidades de utilização de tais algoritmos no trading.
Desenvolvendo um sistema de Replay (Parte 36): Ajeitando as coisas (II)
Uma das coisas que mais pode complicar a nossa vida como programadores é o fato de supor as coisas. Neste artigo mostrarei o perigo de fazer suposições. Tanto na parte da programação em MQL5, onde você supõem que um tipo terá um dado tamanho. Assim como no uso do MetaTrader 5, onde você supõem que servidores diferentes funcionam da mesma forma.
Algoritmo de recompra: Simulação de negociação em várias moedas
Neste artigo, criaremos um modelo matemático para simular a precificação em várias moedas e concluiremos o estudo, que comecei no artigo anterior, sobre o princípio de diversificação como parte da busca por mecanismos para aumentar a eficiência da negociação.
Desenvolvendo um sistema de Replay (Parte 43): Projeto do Chart Trade (II)
Grande parte das pessoas que querem, ou desejam aprender a programar, não fazem de fato ideia, do que estão fazendo. O que elas fazem é tentar criar as coisas de uma determinada maneira. No entanto, quando programamos não estamos de fato tentando criar um solução. Se você tentar fazer isto, desta forma irá gerar mais problemas do que realmente uma solução. Aqui iremos fazer algo um pouco mais avançado, e por consequência diferente.
Desenvolvendo um sistema de Replay (Parte 28): Projeto Expert Advisor — Classe C_Mouse (II)
Quanto de fato os primeiros sistema capazes de fatorar alguma coisa, começaram a ser produzidos. Tudo tinha que ser feito por engenheiros com grande conhecimento, no que estava sendo projetado. Isto nos primórdios da computação, onde se quer existia algum tipo de terminal, para que fosse possível programar algo. Conforme ia se desenvolvendo, e o interesse de que mais pessoas também conseguisse criar algo, começou surgir novas ideias e meios, de programar aquelas máquinas, que antes era feito mudando a posição dos conectores. Assim começamos a ter os primeiros terminais.
Desenvolvimento de uma DLL experimental com suporte a multithreading em C++ para MetaTrader 5 no Linux
Este artigo descreve o processo de desenvolvimento para a plataforma MetaTrader 5 exclusivamente em Linux. O produto final funciona tanto no Windows quanto no Linux sem nenhum problema. Veremos o Wine e o Mingw, ferramentas importantes para o desenvolvimento entre plataformas. O Mingw apresenta threads (POSIX e Win32), que você deve levar em conta ao escolher uma ferramenta adequada. Criaremos também uma DLL para testar o conceito e usá-la no código MQL5, comparando o desempenho das duas implementações de threading. O artigo tem como objetivo ser um ponto de partida para a realização de seus próprios experimentos. Depois de ler este artigo, você será capaz de criar ferramentas para o MetaTrader no Linux.
Negociação algorítmica com MetaTrader 5 e R para iniciantes
Neste artigo, vamos combinar análise financeira com negociação algorítmica, além de ver como integrar R e MetaTrader 5. Este artigo é um guia para unir a flexibilidade analítica do R com as enormes possibilidades de negociação do MetaTrader 5.
Redes neurais de maneira fácil (Parte 15): Agrupamento de dados via MQL5
Continuamos a estudar o método de agrupamento. Neste artigo, criaremos uma nova classe CKmeans para implementar um dos métodos de agrupamento k-médias mais comuns. Com base nos resultados dos testes, podemos concluir que o modelo é capaz de identificar cerca de 500 padrões.
Gerenciador de risco para operar manualmente
Neste artigo, falaremos em detalhes sobre como escrever uma classe gerenciadora de risco para negociar manualmente a partir do zero. Essa classe também poderá servir como base para os traders que operam usando programação.
Análise de Sentimento e Deep Learning para Trading com EA e Backtesting com Python
Neste artigo, vamos introduzir a Análise de Sentimento e Modelos ONNX com Python para serem usados em um EA. Um script executa um modelo ONNX treinado do TensorFlow para previsões de deep learning, enquanto outro busca manchetes de notícias e quantifica o sentimento usando IA.
Indicador de avaliação da força e da fraqueza dos pares de moedas em MQL5 puro
Estamos criando um indicador profissional para análise da força das moedas em MQL5. Neste guia passo a passo, você aprenderá a desenvolver uma poderosa ferramenta de trading com painel visual para o MetaTrader 5, a calcular a força das moedas em múltiplos timeframes (H1, H4 e D1), a implementar a atualização dinâmica de dados e a criar uma interface amigável para o usuário.
Como escolher um Expert Advisor: Vinte caraterísticas de um robô de baixa qualidade
Neste artigo, iremos responder à pergunta de como escolher o Expert Advisor correto. Quais são os mais adequados para o nosso portfólio e como podemos filtrar a maioria dos robôs de negociação disponíveis no mercado? Este artigo apresenta vinte caraterísticas evidentes de um EA de baixa qualidade. Ele ajudará você a tomar decisões mais informadas e criar uma coleção de EAs lucrativos.
Criando um painel MQL5 interativo usando a classe Controls (Parte 1): Configurando o painel
Neste artigo, vamos criar um painel de negociação interativo utilizando a classe Controls no MQL5, voltado para otimizar as operações de trading. O painel conterá um cabeçalho, botões de navegação para trading, fechamento e informações, além de botões especializados para envio de ordens e gerenciamento de posições. Ao final do artigo, teremos um painel básico pronto para futuras melhorias.
Redes neurais de maneira fácil (Parte 23): Criando uma ferramenta para transferência de aprendizado
Nesta série de artigos, já mencionamos a transferência de aprendizado mais de uma vez. Mas até agora o assunto não foi além das menções. Sugiro preencher essa lacuna e dar uma olhada mais de perto na transferência de aprendizado.
Experimentos com redes neurais (Parte 6): O perceptron como uma ferramenta de previsão de preços autossuficiente
Veja um exemplo do uso do perceptron como um meio autossuficiente de previsão de preços. Esse artigo aborda conceitos gerais, apresenta um Expert Advisor simples e pronto para uso e os resultados de sua otimização.
Redes neurais de maneira fácil (Parte 31): Algoritmos evolutivos
No último artigo, iniciamos a análise dos métodos de otimização sem gradiente, e nos familiarizamos com o algoritmo genético. Hoje, continuaremos a discutir o mesmo assunto e também examinaremos outra classe de algoritmos evolutivos.
Redes neurais de maneira fácil (Parte 28): algoritmo de gradiente de política
Continuamos a estudar métodos de aprendizado por reforço. No artigo anterior, nos iniciamos no método de aprendizado Q profundo. Com ele, treinamos um modelo para prever a recompensa imediata dependendo da ação tomada por nós em uma determinada situação. E, em seguida, realizamos uma ação de acordo com nossa política e a recompensa esperada. Mas nem sempre é possível aproximar a função Q ou nem sempre sua aproximação dá o resultado desejado. Nesses casos, os métodos de aproximação são usados não para funções de utilidade, mas, sim, para uma política (estratégia) direta de ações. E é precisamente a esses métodos que o gradiente de política pertence.
Desenvolvendo um sistema de Replay - Simulação de mercado ( Parte 21): FOREX (II)
Vamos continuar a montagem do sistema para cobrir o mercado de FOREX. Então para resolver este problema, precisaríamos primeiramente, declarar o carregamento dos tickets, antes de fazer o carregamento das barras previas. Isto resolve o problema, mas ao mesmo tempo força o usuário, a um tipo de modelagem do arquivo de configuração, que ao meu ver não faz muito sentido. O motivo é que, ao desenvolver a programação, responsável por analisar e executar o que esta no arquivo de configuração, podemos permitir ao usuário, declarar as coisas em qualquer ordem.
Modelos ocultos de Markov em sistemas de trading com aprendizado de máquina
Os modelos ocultos de Markov (HMM) representam uma classe poderosa de modelos probabilísticos, destinados à análise de dados sequenciais, nos quais os eventos observáveis dependem de alguma sequência de estados não observáveis (ocultos), que formam um processo de Markov. As principais suposições dos HMM incluem a propriedade de Markov para os estados ocultos, o que significa que a probabilidade de transição para o próximo estado depende apenas do estado atual, e a independência das observações, desde que o estado oculto atual seja conhecido.
Como desenvolver um sistema de negociação baseado no indicador DeMarker
Aqui está um novo artigo em nossa série sobre como desenvolver um sistema de negociação pelos indicadores técnicos mais populares. Neste artigo, nós apresentaremos como criar um sistema de negociação pelo indicador DeMarker.
Construindo um Modelo de Restrição de Tendência com Candlesticks (Parte 5): Sistema de Notificação (Parte I)
Dividiremos o código principal do MQL5 em trechos específicos para ilustrar a integração do Telegram e WhatsApp para receber notificações de sinais do indicador de Restrição de Tendência que estamos criando nesta série de artigos. Isso ajudará traders, tanto iniciantes quanto desenvolvedores experientes, a compreender o conceito com mais facilidade. Primeiro, abordaremos a configuração do MetaTrader 5 para notificações e sua importância para o usuário. Isso ajudará os desenvolvedores a tomarem nota antecipadamente para aplicar posteriormente em seus sistemas.
Redes neurais de maneira fácil (Parte 59): dicotomia do controle (DoC)
No artigo anterior, nos familiarizamos com o transformador de decisões. Porém, o complexo ambiente estocástico do mercado de moedas não permitiu revelar totalmente o potencial do método apresentado. Hoje, quero apresentar a vocês um algoritmo focado em melhorar o desempenho dos algoritmos em ambientes estocásticos.
EA de grid-hedge modificado em MQL5 (Parte II): Criando um EA de grade simples
O artigo aborda a estratégia clássica de grade, descrevendo detalhadamente sua automação com um EA em MQL5 e analisando os resultados iniciais dos testes históricos. Também enfatiza a necessidade de manter posições por um longo período e considera a possibilidade de otimização de parâmetros-chave (como distância, take-profit e tamanhos de lotes) em futuras partes. O objetivo desta série de artigos é aumentar a eficiência da estratégia de negociação e sua adaptabilidade a diferentes condições de mercado.
Alan Andrews e suas técnicas de análise de séries temporais
Alan Andrews é um dos mais renomados "educadores" do mundo do trading atual, no campo da análise de mercado. Suas "forquilhas" estão presentes em praticamente todos os programas modernos de análise de cotações. No entanto, a maioria dos traders utiliza apenas uma pequena fração das possibilidades oferecidas por essa ferramenta. O curso original de Andrews abrange não apenas a descrição das forquilhas (embora sejam o aspecto principal), mas também outras diretrizes úteis. Este artigo apresenta uma visão dessas incríveis técnicas de análise de gráficos que Andrews ensinou em seu curso original. Atenção: muitas imagens serão utilizadas.