Artigos sobre como automatizar sistemas de negociação na linguagem MQL5

Leia artigos sobre os sistemas de negociação com uma grande variedade de ideias essenciais. Aprenda como usar métodos estatísticos e padrões em gráficos de vela, como filtrar os sinais e onde usar os indicadores de semáforo.

O Assistente MQL5 irá ajudá-lo a criar robôs sem programação para verificar rapidamente suas ideias de negociação. Use o Assistente para aprender sobre os algoritmos genéticos.

Novo artigo
recente | principal

Como se tornar um bom programador (Parte 1): cinco hábitos que devem ser abandonados para programar melhor em MQL5

Tanto iniciantes quanto programadores avançados têm alguns hábitos ruins que os impedem de melhorar. Neste artigo, vamos discuti-los e ver o que podemos fazer com eles. O artigo é destinado a todos

Padrões com exemplos (Parte I): Topo múltiplo

Com este artigo começamos um ciclo em que consideraremos padrões de reversão no âmbito da negociação algorítmica. Iniciamos examinando a primeira e mais interessante família de padrões desse tipo que

Swaps (Parte I): bloqueio e posições sintéticas

Neste artigo, tentarei expandir o conceito clássico de métodos de negociação de swap, e também explicarei porque cheguei à conclusão de que ele, em minha opinião, merece atenção especial e vale

Scalping combinado: trades do passado ou melhoria do desempenho dos trades futuros

Agora analisaremos uma descrição da abordagem para aumentar a eficácia de qualquer sistema de negociação automatizado. Este artigo mostra resumidamente a ideia, os fundamentos básicos, as

Redes neurais de maneira fácil (Parte 13): normalização em lote

No artigo anterior, começamos a examinar métodos para melhorar a qualidade do treinamento da rede neural. Neste artigo, proponho continuar este tópico e considerar uma outra abordagem, em particular a

Padrão de design MVC e a possibilidade de usá-lo

Este artigo falará sobre um padrão MVC comum, bem como sobre os prós e os contras de seu uso em programas MQL. Seu propósito é o de "dividir" o código existente em três componentes separados: Modelo

Força bruta para encontrar padrões (Parte IV): funcionalidade mínima

Neste artigo, mostrarei uma versão aprimorada da abordagem de força bruta, com base nos objetivos definidos no artigo anterior, e tentarei cobrir este tópico da forma mais ampla possível usando os EAs

Aprendizado de máquina em sistemas de negociação baseados em grade e martingale. Deveríamos apostar nele?

Este artigo apresentará ao leitor a técnica de aprendizado de máquina para negociação baseada em grade e martingale. Para minha surpresa, essa abordagem, por algum motivo, não é afetada de forma

Redes Neurais de Maneira Fácil (Parte 12): Dropout

Como a próxima etapa no estudo das redes neurais, eu sugiro considerar os métodos de aumentar a convergência durante o treinamento da rede neural. Existem vários desses métodos. Neste artigo, nós

Outras classes na biblioteca DoEasy (Parte 66): classe-coleção de Sinais MQL5.com

Neste artigo, criaremos uma classe-coleção de sinais - do serviço Sinais MQL5.com - com funções para gerenciar sinais assinados e também modificaremos a classe do objeto-instantâneo do livro de

Trabalhando com preços e sinais na biblioteca DoEasy (Parte 65): coleção de livros de ofertas e classe para trabalhar com sinais MQL5.com

Neste artigo, criaremos uma classe-coleção de livros de ofertas para todos os símbolos e começaremos a desenvolver a funcionalidade para trabalhar com o serviço de sinais MQL5.com - criaremos uma

Redes Neurais de Maneira Fácil (Parte 11): Uma visão sobre a GPT

Talvez um dos modelos mais avançados entre as redes neurais de linguagem atualmente existentes seja a GPT-3, cuja variante máxima contém 175 bilhões de parâmetros. Claro, nós não vamos criar tal

Trabalhando com preços na biblioteca DoEasy (Parte 64): livro de ofertas, classes do objeto-instantâneo e objeto-série de instantâneos do livro de ofertas

Neste artigo, criaremos duas classes (a do objeto-instantânea do livro de ofertas e a do objeto-série dos instantâneos do livro de ofertas) e testaremos a criação de uma série de dados do livro de

Algoritmo auto-adaptável (Parte IV): funcionalidade e testes adicionais

Continuo a complementar o algoritmo com a funcionalidade mínima necessária, vou fazer testes do que obtivemos como resultado. A lucratividade acabou sendo baixa, mas os artigos mostram um modelo que

Trabalhando preços na biblioteca DoEasy (Parte 63): livro de ofertas, classe de ordem abstrata do livro de ofertas

Neste artigo, começaremos a desenvolver funcionalidades para trabalhar com o livro de ofertas. Criaremos uma classe de objeto para uma ordem abstrata do livro de ofertas e dos seus herdeiros

Aplicação prática de redes neurais no trading (Parte 2). Visão computacional

O uso da visão computacional permite treinar redes neurais, usando uma representação visual do gráfico de preços e indicadores. Este método nos permite operar mais livremente com todo o conjunto de

Trabalhando com preços na biblioteca DoEasy (Parte 62): atualização em tempo real da série de ticks, preparação para trabalhar com o livro de ofertas

Neste artigo, atualizaremos em tempo real da coleção de dados de ticks e prepararemos a classe do objeto-símbolo para trabalhar com o livro de ofertas, cujo funcionamento abordaremos no próximo

Redes neurais de maneira fácil (Parte 10): Atenção Multi-Cabeça

Nós já consideramos anteriormente o mecanismo de self-attention (autoatenção) em redes neurais. Na prática, as arquiteturas de rede neural modernas usam várias threads de self-attention paralelas para

Trabalhando com preços na biblioteca DoEasy (Parte 61): coleção de séries de ticks para símbolos

Visto que diferentes símbolos podem ser usados durante a operação do programa, é necessário criar uma lista própria para cada um deles. Hoje vamos combinar essas listas numa coleção de dados de ticks

Algoritmo auto-adaptável (Parte III): evitando a otimização

É impossível obter um algoritmo verdadeiramente estável se para a seleção de parâmetros com base em dados históricos for usada uma otimização. Um algoritmo estável em si deve saber que parâmetros são

Busca de padrões sazonais no mercado de Forex usando o algoritmo CatBoost

O artigo considera a criação de modelos de aprendizado de máquina com filtros de tempo e discute a eficácia dessa abordagem. O fator humano pode ser eliminado agora simplesmente instruindo o modelo a

O mercado e a física de seus padrões globais

Neste artigo, eu tentarei testar a suposição de que qualquer sistema, mesmo com uma pequena compreensão do mercado, pode operar em escala global. Eu não inventarei nenhuma teoria ou padrão, mas apenas

Desenvolvendo um algoritmo auto-adaptável (Parte II): melhorando a eficiência

Neste artigo, continuarei meu tópico, mas começarei tornando o algoritmo desenvolvido anteriormente mais flexível. Ele se tornou mais estável com o aumento no número de candles na janela de análise ou

Trabalhando com séries temporais na biblioteca DoEasy (Parte 59): objeto para armazenar dados de um tick

Com este artigo, vamos começar a criar a funcionalidade de biblioteca para trabalhar com dados de preços. Hoje vamos criar uma classe de objeto que armazenará todos os dados de preços recebidos no

Desenvolvendo um algoritmo auto-adaptável (Parte I): encontrando um padrão básico

Numa série de artigos, mostrarei um exemplo de como desenvolver algoritmos auto-adaptativos que levam em consideração a maioria de fatores que surgem nos mercados, apresentarei como sistematizar essas

Gradient boosting no aprendizado de máquina transdutivo e ativo

Neste artigo, nós consideraremos os métodos de aprendizado de máquina ativo que se baseiam em dados reais e discutiremos seus prós e contras. Talvez você considere esses métodos úteis e os inclua em

Reamostragem avançada e seleção de modelos CatBoost pelo método de força bruta

Este artigo descreve uma das possíveis abordagens para a transformação de dados com o objetivo de melhorar a generalização do modelo, ele também discute a amostragem e seleção dos modelos CatBoost

Algoritmo de aprendizado de máquina CatBoost da Yandex sem conhecimento prévio de Python ou R

O artigo fornece o código e a descrição das principais etapas do processo de aprendizado de máquina usando um exemplo específico. Para obter o modelo, você não precisa de conhecimento prévio em Python

Trabalhando com séries temporais na biblioteca DoEasy (Parte 56): objeto de indicador personalizado, obtenção de dados a partir de objetos-indicadores numa coleção

Neste artigo, veremos a criação de um objeto de indicador personalizado para ser usado em Expert Advisors. Vamos modificar ligeiramente as classes da biblioteca e escrever métodos para receber dados

Exemplos de análise de gráficos usando o TD Sequential e os níveis de Murray-Gann

O TD Sequential mostra perfeitamente as mudanças no equilíbrio durante o movimento do preço. Isso é especialmente evidente se usarmos seus sinais juntamente com um indicador de nível, como com os

Aplicação prática de redes neurais no trading. Python (Parte I)

Neste artigo, analisaremos passo a passo a implementação de um sistema de negociação baseado na programação de redes neurais profundas em Python. Para isso, usaremos a biblioteca de aprendizado de

Abordagem ideal para desenvolver e analisar sistemas de negociação

Neste artigo, além de tentar apresentar que critérios usar ao escolher um sistema ou sinal para investir seu dinheiro, aventurar-me-ei a mostrar qual é a melhor abordagem para desenvolver sistemas de

Redes Neurais de Maneira Fácil(Parte 7): Métodos de otimização adaptativos

Nos artigos anteriores, nós usamos o gradiente descendente estocástico para treinar uma rede neural usando a mesma taxa de aprendizado para todos os neurônios da rede. Neste artigo, eu proponho olhar

Gradient Boosting (CatBoost) no desenvolvimento de sistemas de negociação. Uma abordagem ingênua

Treinamento do classificador CatBoost em Python e exportação do modelo para a mql5, bem como a análise dos parâmetros do modelo e um testador de estratégia customizado. A linguagem Python e a

Conjunto de ferramentas para marcação manual de gráficos e negociação (Parte II). Fazendo a marcação

Este artigo é uma continuação do ciclo em que mostro como criar uma biblioteca conveniente para mim, a fim de desenhar o layout de gráficos manualmente com ajuda de atalhos de teclado. A marcação é

Redes Neurais de Maneira Fácil (Parte 5): Cálculos em Paralelo com o OpenCL

Discutimos anteriormente alguns tipos de implementações da rede neural. Nas redes consideradas, as mesmas operações são repetidas para cada neurônio. Uma etapa lógica adicional é utilizar os recursos

Redes Neurais de Maneira Fácil(Parte 4): Redes Recorrentes

Nós continuamos estudando o mundo das redes neurais. Neste artigo, nós analisaremos outro tipo de rede neural, as redes recorrentes. Este tipo de rede foi proposto para uso com as séries temporais

Grade e martingale: o que são e como usá-los?

Neste artigo, tentarei explicar em detalhes o que são grade e martingale, bem como o que eles têm em comum. Além disso, procurarei analisar o quão viáveis essas estratégias são na realidade. Teremos

Redes Neurais de Maneira Fácil (Parte 3): Redes Convolucionais

Como uma continuação do tópico das redes neurais, eu proponho ao leitor a análise das redes neurais convolucionais. Esse tipo de rede neural geralmente é aplicado para analisar imagens visuais. Neste

Trabalhando com séries temporais na biblioteca DoEasy (Parte 55): classe-coleção de indicadores

Neste artigo, continuaremos a desenvolver as classes de objetos-indicadores e suas coleções. Para cada objeto-indicador vamos criar uma descrição e ajustar a classe-coleção para armazenamento sem