
Operações com Matrizes e Vetores em MQL5
Matrizes e vetores foram introduzidos na MQL5 para operações eficientes com soluções matemáticas. Os novos tipos oferecem métodos integrados para a criação de código conciso e compreensível que se aproxima da notação matemática. Os arrays fornecem recursos extensos, mas há muitos casos em que as matrizes são muito mais eficientes.


Trabalhando com preços na biblioteca DoEasy (Parte 62): atualização em tempo real da série de ticks, preparação para trabalhar com o livro de ofertas
Neste artigo, atualizaremos em tempo real da coleção de dados de ticks e prepararemos a classe do objeto-símbolo para trabalhar com o livro de ofertas, cujo funcionamento abordaremos no próximo artigo.

Desenvolvendo um EA de negociação do zero (Parte 30): CHART TRADE agora como indicador ?!
Trazendo o Chart Trade de volta a ativa ... mas agora ele será um indicador e poderá ou não estar presente no gráfico.


Outras classes na biblioteca DoEasy (Parte 72): rastreamento e fixação dos parâmetros de objetos-gráficos numa coleção
Neste artigo, vamos finalizar as classes de objetos-gráficos e de sua coleção. Faremos o rastreamento automático das alterações das propriedades dos gráficos e das suas janelas, bem como o armazenamento de novos parâmetros nas propriedades do objeto. Este aprimoramento nos permitirá gerar uma funcionalidade de evento para toda a coleção de gráficos no futuro.

Domine e utilize o testador de estratégias MQL5 de forma eficiente
Os desenvolvedores MQL5 devem dominar diversas ferramentas essenciais. Entre elas, destaca-se o testador de estratégias. Este artigo serve como um guia prático para a utilização do testador de estratégias MQL5.


Trabalhando preços na biblioteca DoEasy (Parte 63): livro de ofertas, classe de ordem abstrata do livro de ofertas
Neste artigo, começaremos a desenvolver funcionalidades para trabalhar com o livro de ofertas. Criaremos uma classe de objeto para uma ordem abstrata do livro de ofertas e dos seus herdeiros.


Outras classes na biblioteca DoEasy (Parte 68): classe de objeto-gráfico e classes de objetos-indicadores na janela do gráfico
Neste artigo, continuaremos a desenvolver a classe do objeto-gráfico. Vamos adicionar uma lista de objetos-janelas, onde, por sua vez, estarão disponíveis as listas de indicadores colocados nestas.

Analisando as razões pelas quais alguns EAs fracassam
Neste artigo, analisaremos dados de moedas e tentaremos entender com isso por que os Expert Advisors podem mostrar bons resultados em alguns intervalos e, ao mesmo tempo, ter um desempenho ruim em outros.

Gradient boosting no aprendizado de máquina transdutivo e ativo
Neste artigo, nós consideraremos os métodos de aprendizado de máquina ativo que se baseiam em dados reais e discutiremos seus prós e contras. Talvez você considere esses métodos úteis e os inclua em seu arsenal de modelos de aprendizado de máquina. A transdução foi introduzida por Vladimir Vapnik, que é o coinventor da Support-Vector Machine (SVM).

Ciência de Dados e Aprendizado de Máquina (Parte 05): Árvores de Decisão
As árvores de decisão imitam a maneira como os humanos pensam para classificar os dados. Vamos ver como construir árvores e usá-las para classificar e prever alguns dados. O principal objetivo do algoritmo de árvores de decisão é separar os dados impuros em puros ou próximos a nós.

Gestão de risco e capital utilizando Expert Advisors
Este artigo é sobre o que você não pode ver em um relatório de backtest, o que você deve esperar usando um software de negociação automatizado, como gerenciar seu dinheiro se estiver usando expert advisors e como cobrir uma perda significativa para permanecer na atividade de negociação quando você está usando procedimentos automatizados.

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 04): Ajustando as coisas (II)
Vamos continuar a criação do sistema e controle. Já que sem uma forma de controlar o serviço, fica muito complicado dar algum outro passo a fim de melhorar algo no sistema.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 55): classe-coleção de indicadores
Neste artigo, continuaremos a desenvolver as classes de objetos-indicadores e suas coleções. Para cada objeto-indicador vamos criar uma descrição e ajustar a classe-coleção para armazenamento sem erros e recuperação de objetos-indicadores a partir da lista-coleção.


Quem é quem na MQL5.community?
O site MQL5.com o lembra muito bem disso! Quantos dos seus tópicos são épicos, quão popular são os seus artigos e quantas vezes seus programas na base do código são baixados - esta é apenas uma pequena parte do que é lembrado em MQL5.com. Suas realizações estão disponíveis no seu perfil, mas e o quadro geral? Neste artigo, vamos mostrar o quadro geral de todas as conquistas do membros da MQL5.community.


O MQL5 Market está fazendo um ano de idade
Já passou um ano desde o lançamento das vendas no Mercado MQL5. Foi um ano de trabalho duro, que transformou o novo serviço na maior loja de robôs de negociação e de indicadores técnicos para a plataforma MetaTrader 5.


Resultados do MQL5 Market para o primeiro trimestre de 2013
Desde sua fundação, a loja de robôs de negociação e indicadores técnicos MQL5 Market já atraiu mais de 250 desenvolvedores que publicaram 580 produtos. O primeiro trimestre de 2013 acabou se tornando de grande sucesso para alguns vendedores do MQL5 Market que conseguiram ganhar bons lucros vendendo seus produtos.


Trabalhando com séries temporais na biblioteca DoEasy (Parte 47): indicadores padrão multiperíodos multissímbolos
Neste artigo começaremos a desenvolver métodos para trabalhar com indicadores padrão, o que nos permitirá criar indicadores multissímbolos e multiperíodos padrão. Também adicionaremos o evento "Barras ausentes" às classes das séries temporais e descarregaremos o código do programa principal movendo as funções de preparação da biblioteca para a classe CEngine.


Trabalhando com preços e sinais na biblioteca DoEasy (Parte 65): coleção de livros de ofertas e classe para trabalhar com sinais MQL5.com
Neste artigo, criaremos uma classe-coleção de livros de ofertas para todos os símbolos e começaremos a desenvolver a funcionalidade para trabalhar com o serviço de sinais MQL5.com - criaremos uma classe objeto-sinal.

Ciência de Dados e Aprendizado de Máquina (Parte 07): Regressão Polinomial
Ao contrário da regressão linear, a regressão polinomial é um modelo flexível destinado a performar melhor em tarefas que o modelo de regressão linear não poderia lidar. Vamos descobrir como fazer modelos polinomiais em MQL5 e tirar algo positivo disso.

Desenvolvendo um EA de negociação do zero (Parte 17): Acessando dados na WEB (III)
Como obter dados da WEB para serem usados em um EA. Então vamos por as mãos na massa, ou melhor começar a codificar um sistema alternativo.

GIT: Mas que coisa é esta ?
Neste artigo apresentarei uma ferramenta de suma importância para quem desenvolve programas. Se você não conhece GIT, veja este artigo para ter uma noção do que se trata, tal ferramenta. E como usá-la junto ao MQL5.

Desenvolvendo um sistema de Replay (Parte 32): Sistema de Ordens (I)
De todas as coisas desenvolvidas até aqui. Esta com toda a certeza, vocês também irão notar, e com o tempo irão concordar, que é a mais desafiadora de todas. O que temos de fazer é algo simples. Fazer com que o nosso sistema, simule o que um servidor de negociação efetua na prática. Isto de ter que implementar uma forma de simular, exatamente o que seria feito, pelo servidor de negociação, parece simples. Pelo menos nas palavras. Mas precisamos fazer isto de uma maneira, que para o usuário do sistema de replay / simulação, tudo venha a acontecer, de forma o mais invisível, ou transparente, possível.

Otimização paralela pelo método de enxame de partículas (Particle Swarm Optimization)
Este artigo descreve uma forma de otimização rápida por meio do método de enxame de partículas e apresenta uma implementação em MQL pronta para ser utilizada tanto no modo thread único dentro do EA quanto no modo multi-thread paralelo com complemento que executado nos agentes locais do testador.


Resultados da MetaTrader AppStore para o terceiro trimestre de 2013
Outro trimestre do ano se passou e nós decidimos resumir seus resultados para a MetaTrader AppStore - a maior loja de robôs comerciais e indicadores técnicos para plataformas MetaTrader. Mais de 500 desenvolvedores colocaram mais de 200 produtos no mercado até o final do trimestre reportado.

Algoritmos de otimização populacionais: Algoritmo de otimização de cuco (COA)
O próximo algoritmo que abordaremos será a otimização de busca de cuco usando voos Levy. Este é um dos algoritmos de otimização mais recentes e um novo líder na tabela de classificação.

Ciência de Dados e Aprendizado de Máquina (Parte 02): Regressão Logística
A classificação de dados é uma coisa crucial para um algotrader e um programador. Neste artigo, nós vamos nos concentrar em um dos algoritmos de classificação logística que provavelmente podem nos ajudar a identificar os Sims ou Nãos, as Altas e Baixas, Compras e Vendas.

Ciência de Dados e Aprendizado de Máquina (Parte 04): Previsão de um crash no mercado de ações
Neste artigo, eu tentarei usar nosso modelo logístico para prever o crash do mercado de ações com base nos fundamentos da economia dos EUA, nos concentraremos nas ações do NETFLIX e da APPLE, usando os crashes anteriores do mercado de 2019 e 2020, vamos ver como nosso modelo se comportará nas atuais desgraças e tristezas.


Outras classes na biblioteca DoEasy (Parte 71): eventos da coleção de objetos-gráficos
Neste artigo, criaremos uma funcionalidade para rastrear alguns eventos de objetos-gráficos - adição/remoção de gráficos de símbolos, de subjanelas do gráfico, bem como adição/exclusão/mudança de indicadores presentes em janelas de gráficos.


Trabalhando com séries temporais na biblioteca DoEasy (Parte 44): classe-coleção de objetos de buffers de indicador
Neste artigo, veremos a criação de uma classe-coleção de objetos de buffers de indicador, testaremos tanto as possibilidades de criar qualquer quantidade de buffers para programas-indicadores quanto as de trabalhar com eles (o número máximo de buffers que podem ser criados em indicadores MQL é de 512 buffers).

EA de grid-hedge modificado em MQL5 (Parte I): Criando um EA de hedge simples
Criaremos um EA de hedge simples como base para nosso EA Grid-Hedge mais avançado, que será uma mistura de estratégias clássicas de grade e de hedge clássicas. Ao final deste artigo, você saberá como criar uma estratégia de hedge simples e o que as pessoas estão dizendo sobre a lucratividade dessa estratégia.

Teoria das Categorias em MQL5 (Parte 1)
A Teoria das Categorias é um ramo diverso da Matemática e em expansão, sendo uma área relativamente recente na comunidade MQL. Esta série de artigos visa introduzir e examinar alguns de seus conceitos com o objetivo geral de estabelecer uma biblioteca aberta que atraia comentários e discussões enquanto esperamos promover o uso deste campo notável no desenvolvimento da estratégia dos traders.

Ciência de Dados e Aprendizado de Máquina (Parte 06): Gradiente Descendente
O gradiente descendente desempenha um papel significativo no treinamento das redes neurais e muitos algoritmos de aprendizado de máquina. Ele é um algoritmo rápido e inteligente, apesar do seu trabalho impressionante, ele ainda é mal interpretado por muitos cientistas de dados, vamos ver do que ele se trata.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 50): indicadores padrão multiperíodos multissímbolos com deslocamento
Neste artigo, melhoraremos os métodos da biblioteca para exibir corretamente indicadores padrão multissímbolos e multiperíodos, cujas linhas são exibidas no gráfico do símbolo atual com determinado deslocamento definido nas configurações. Também colocaremos as coisas em ordem nos métodos que permitem trabalhar com indicadores padrão e removeremos o código desnecessário no programa-indicador final para a área da biblioteca.


Resultados do MQL5 Market para o segundo trimestre de 2013
Operando com sucesso a um ano e meio, o MQL5 Market se tornou a maior loja de estratégias de negócios e indicadores técnicos de negociadores. Ele oferece cerca de 800 aplicações fornecidas por 350 desenvolvedores de todo o mundo. Mais de 100.000 programas de negócio já foram comprados e baixados por negociantes para os terminais do MetaTrader 5.


Combinatória e teoria da probabilidade para negociação (Parte III): primeiro modelo matemático
Para dar continuação lógica ao tópico, hoje abordaremos o desenvolvimento de modelos matemáticos multifuncionais para tarefas de negociação. Assim sendo, descreverei todo o processo de desenvolvimento do primeiro modelo matemático para descrever fractais a partir do zero. Este modelo deve se tornar um importante alicerce, ser multifuncional e universal, inclusive para construir a base teórica para o futuro desenvolvimento do ramo.

Stop-loss e take-profit amigáveis ao trader
Stop-loss e take-profit podem ter um impacto significativo nos resultados do trading. Neste artigo, vamos explorar algumas maneiras de encontrar os valores ótimos para ordens de stop.

Algoritmos de otimização populacionais: algoritmo de vaga-lumes
Vamos considerar o método de otimização de vaga-lumes (Firefly Algorithm, FA). Esse algoritmo evoluiu de um método desconhecido por meio de modificações para se tornar um líder real na tabela de classificação.

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 18): Tiquete e mais tiquetes (II)
Neste, fica extremamente claro, que as métricas, estão muito longe, do tempo ideal de confecção das barras de 1 minuto. Assim então, a primeira coisa que de fato iremos corrigir, será justamente isto. Corrigir a questão da temporização, não é algo complicado. Por mais incrível que possa parecer, é na verdade até bem simples de ser feito. Porém não fiz a correção no artigo anterior, por que lá o desejo era explicar, como fazer para jogar os dados de tickets, que estavam sendo usados para gerar as barras de 1 minuto no gráfico, para dentro da janela de observação de mercado.


Trabalhando com preços na biblioteca DoEasy (Parte 64): livro de ofertas, classes do objeto-instantâneo e objeto-série de instantâneos do livro de ofertas
Neste artigo, criaremos duas classes (a do objeto-instantânea do livro de ofertas e a do objeto-série dos instantâneos do livro de ofertas) e testaremos a criação de uma série de dados do livro de ofertas.


Outras classes na biblioteca DoEasy (Parte 66): classe-coleção de Sinais MQL5.com
Neste artigo, criaremos uma classe-coleção de sinais - do serviço Sinais MQL5.com - com funções para gerenciar sinais assinados e também modificaremos a classe do objeto-instantâneo do livro de ofertas para exibir o volume total de ordens sell e buy.