Artigos sobre análise de dados e estatísticas na MQL5

icon

Muitos traders apreciam artigos sobre modelos matemáticos e teoria das probabilidades. Afinal de contas, a matemática é a base dos indicadores técnicos, e o conhecimento em estatística é necessário para analisar os resultados das operações e desenvolver estratégias.

Leia sobre lógica fuzzy, filtros digitais, perfil do mercado, mapas de Kohonen, redes neurais e muitas outras ferramentas que podem ser usadas para negociação.

Novo artigo
recentes | melhores
preview
Ciência de dados e Aprendizado de Máquina (parte 10): Regressão de Ridge

Ciência de dados e Aprendizado de Máquina (parte 10): Regressão de Ridge

A regressão de Ridge é uma técnica simples para reduzir a complexidade do modelo e evitar o ajuste excessivo que pode resultar da regressão linear simples
preview
Matrix Utils, estendendo as matrizes e a funcionalidade da biblioteca padrão de vetores

Matrix Utils, estendendo as matrizes e a funcionalidade da biblioteca padrão de vetores

As matrizes servem como base para os algoritmos de aprendizado de máquina e computação em geral devido à sua capacidade de lidar efetivamente com grandes operações matemáticas. A biblioteca padrão tem tudo o que é necessário, mas vamos ver como podemos estendê-la introduzindo várias funções no arquivo utils, ainda não disponível na biblioteca
preview
Algoritmos de otimização populacionais: salto de sapo embaralhado

Algoritmos de otimização populacionais: salto de sapo embaralhado

O artigo apresenta uma descrição detalhada do algoritmo salto de sapo embaralhado (Shuffled Frog Leaping Algorithm, SFL) e suas capacidades na solução de problemas de otimização. O algoritmo SFL é inspirado no comportamento dos sapos em seu ambiente natural e oferece uma nova abordagem para a otimização de funções. O algoritmo SFL é uma ferramenta eficaz e flexível, capaz de lidar com diversos tipos de dados e alcançar soluções ótimas.
preview
Algoritmos de otimização populacional: algoritmos de estratégias evolutivas (Evolution Strategies, (μ,λ)-ES e (μ+λ)-ES)

Algoritmos de otimização populacional: algoritmos de estratégias evolutivas (Evolution Strategies, (μ,λ)-ES e (μ+λ)-ES)

Neste artigo, vamos falar sobre um grupo de algoritmos de otimização conhecidos como "Estratégias Evolutivas" (Evolution Strategies ou ES). Eles são alguns dos primeiros algoritmos que usam princípios de evolução para encontrar soluções ótimas. Vamos mostrar as mudanças feitas nas versões clássicas das ES, além de revisar a função de teste e a metodologia de avaliação dos algoritmos.
preview
Implementação do teste aumentado de Dickey-Fuller no MQL5

Implementação do teste aumentado de Dickey-Fuller no MQL5

Neste artigo, vamos mostrar como implementar o teste aumentado de Dickey-Fuller e sua aplicação para realizar testes de cointegração usando o método de Engle-Granger.
preview
Ciência de Dados e Aprendizado de Máquina — Redes Neurais (Parte 02): Arquitetura das Redes Neurais Feed Forward

Ciência de Dados e Aprendizado de Máquina — Redes Neurais (Parte 02): Arquitetura das Redes Neurais Feed Forward

Há detalhes a serem abordadas na rede neural feed-forward antes de finalizarmos este assunto, a arquitetura é uma delas. Vamos ver como nós podemos construir e desenvolver uma rede neural flexível para as nossas entradas, o número de camadas ocultas e os nós para cada rede.
preview
Redes neurais de maneira fácil (Parte 14): Agrupamento de dados

Redes neurais de maneira fácil (Parte 14): Agrupamento de dados

Devo confessar que já se passou mais de um ano desde que o último artigo foi publicado. Em um período tão longo como esse, é possível reconsiderar muitas coisas, desenvolver novas abordagens. E neste novo artigo, gostaria de me afastar um pouco do método de aprendizado supervisionado usado anteriormente, e sugerir um pouco de mergulho nos algoritmos de aprendizado não supervisionado. E, em particular, desejaria analisar um dos algoritmos de agrupamento, o k-médias (k-means).
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 16): Um novo sistema de classes

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 16): Um novo sistema de classes

Precisamos nos organizar melhor. O código está crescendo e se não o organizarmos agora, será impossível fazer isto depois. Então agora vamos dividir para conquistar. O fato de que o MQL5, nos permite usar classes, nos ajudará nesta tarefa. Mas para fazer isto é preciso que você tenha algum conhecimento sobre algumas coisas envolvidas nas classes. E talvez a que mais deixe, aspirantes e iniciantes perdidos seja a herança. Então neste artigo, irei de forma prática e simples como fazer uso de tais mecanismos.
preview
Desenvolvendo um sistema de Replay (Parte 67): Refinando o Indicador de controle

Desenvolvendo um sistema de Replay (Parte 67): Refinando o Indicador de controle

Neste artigo mostrarei o que um pouco de refinamento no código é capaz de fazer. Tal refinamento tem como objetivo tornar mais simples o nosso código. Fazer um maior uso das chamadas de biblioteca do MQL5. Mas principalmente fazer com que o nosso código se torne bem mais estável, seguro e fácil de ser usado por outras classe, ou outros códigos que por ventura construiremos. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 10): Usando apenas dados reais na replay
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 10): Usando apenas dados reais na replay

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 10): Usando apenas dados reais na replay

Aqui vamos ver como você pode utilizar dados mais fieis ( tickets negociados ) no sistema de replay, sem necessariamente ter que se preocupar se eles estão ou não ajustados.
preview
Desenvolvendo um sistema de Replay (Parte 48): Entendendo e compreendendo alguns conceitos

Desenvolvendo um sistema de Replay (Parte 48): Entendendo e compreendendo alguns conceitos

Que tal aprender algo novo. Neste artigo você irá aprender como transformar Scripts e Serviços e qual a utilidade em se fazer isto.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 09): Eventos Customizados

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 09): Eventos Customizados

Aqui vamos ver como disparar eventos customizados e melhorar a questão sobre como o indicador informa o status do serviço de replay/simulação.
preview
Redes neurais de maneira fácil (Parte 21): Autocodificadores variacionais (VAE)

Redes neurais de maneira fácil (Parte 21): Autocodificadores variacionais (VAE)

No último artigo, analisamos o algoritmo do autocodificador. Como qualquer outro algoritmo, tem suas vantagens e desvantagens. Na implementação original, o autocodificador executa a tarefa de separar os objetos da amostra de treinamento o máximo possível. E falaremos sobre como lidar com algumas de suas deficiências neste artigo.
preview
Desenvolvendo um sistema de Replay (Parte 63): Dando play no serviço (IV)

Desenvolvendo um sistema de Replay (Parte 63): Dando play no serviço (IV)

Neste arquivo vamos finalmente resolver os problemas de simulação dos ticks, em uma barra de um minuto, de forma que eles possam conviver junto com ticks reais. Isto para evitar que venhamos a ter problemas depois. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Dominando o ONNX: Ponto de virada para traders MQL5

Dominando o ONNX: Ponto de virada para traders MQL5

Mergulhe no mundo do ONNX, um poderoso formato aberto para compartilhar modelos de aprendizado de máquina. Descubra como o uso do ONNX pode revolucionar a negociação algorítmica em MQL5, permitindo que os traders integrem sem obstáculos modelos avançados de inteligência artificial e elevem suas estratégias a um novo patamar. Desvende os segredos da compatibilidade entre plataformas e aprenda a desbloquear todo o potencial do ONNX em sua negociação no MQL5. Melhore sua negociação com este guia detalhado sobre ONNX.
preview
Desenvolvimento de robô em Python e MQL5 (Parte 2): Escolha do modelo, criação e treinamento, testador customizado Python

Desenvolvimento de robô em Python e MQL5 (Parte 2): Escolha do modelo, criação e treinamento, testador customizado Python

Continuamos o ciclo de artigos sobre a criação de um robô de trading em Python e MQL5. Hoje, vamos resolver a tarefa de escolher e treinar o modelo, testá-lo, implementar a validação cruzada, busca em grade, além de abordar o ensemble de modelos.
preview
Desenvolvendo um sistema de Replay (Parte 38): Pavimentando o Terreno (II)

Desenvolvendo um sistema de Replay (Parte 38): Pavimentando o Terreno (II)

Muita gente que se diz programador de MQL5, não tem as bases que estarei apresentando aqui, neste artigo. Muitos consideram o MQL5 algo limitado, mas tudo isto se deve a falta de conhecimento. Então, não fique com vergonha por não saber. Mas tenha vergonha de não perguntar. Mas o simples fato, de forçar, e obrigar o MetaTrader 5 a não permitir que um indicador seja duplicado. Não nos dá de maneira alguma meios de efetivar uma comunicação bilateral entre o indicador e o EA. Ainda estamos um pouco longe disto. Mas o simples fato de que o indicador não estará duplicado no gráfico, já nos garante uma certa tranquilidade.
preview
Metamodelos em aprendizado de máquina e negociação: Tempo original das ordens de negociação

Metamodelos em aprendizado de máquina e negociação: Tempo original das ordens de negociação

Metamodelos em aprendizado de máquina: Criação automática de sistemas de negociação com quase nenhum envolvimento humano, o próprio modelo decide como operar e quando operar.
preview
Desenvolvendo um fator de qualidade para os EAs

Desenvolvendo um fator de qualidade para os EAs

Nesse artigo vamos explicar como desenvolver um fator de qualidade para ser retornado pelo seu EA no testador de estratégia. Iremos mostrar duas formas de cálculo conhecidas (Van Tharp e Sunny Harris).
preview
Ciência de Dados e Aprendizado de Máquina (Parte 03): Regressões Matriciais

Ciência de Dados e Aprendizado de Máquina (Parte 03): Regressões Matriciais

Desta vez nossos modelos estão sendo feitos por matrizes, o que permite flexibilidade ao mesmo tempo que nos permite fazer modelos poderosos que podem manipular não apenas cinco variáveis independentes, mas também muitas variáveis, desde que permaneçamos dentro dos limites de cálculos de um computador, este artigo será uma leitura interessante, isso é certo.
Outras classes na biblioteca DoEasy (Parte 70): extensão da funcionalidade e atualização automática da coleção de objetos-gráficos
Outras classes na biblioteca DoEasy (Parte 70): extensão da funcionalidade e atualização automática da coleção de objetos-gráficos

Outras classes na biblioteca DoEasy (Parte 70): extensão da funcionalidade e atualização automática da coleção de objetos-gráficos

Neste artigo, vamos expandir a funcionalidade dos objetos-gráficos, criaremos a navegação em gráficos, geraremos capturas de tela, salvaremos e aplicaremos modelos aos gráficos. Faremos também uma atualização automática da coleção de objetos-gráficos, suas janelas e indicadores.
preview
Algoritmo de recompra: modelo matemático para aumentar a eficiência

Algoritmo de recompra: modelo matemático para aumentar a eficiência

Neste artigo, usaremos o algoritmo de recompra como um guia para um entendimento mais profundo da eficiência dos sistemas de negociação e começaremos a trabalhar com os princípios gerais de aumentar a eficiência de negociação usando matemática e lógica, bem como aplicar os métodos mais inovadores para aumentar a eficiência no contexto de usar qualquer sistema de negociação.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 12): Nascimento do SIMULADOR (II)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 12): Nascimento do SIMULADOR (II)

Desenvolver um simulador pode ser muito mais interessante do que parece. Então vamos dar mais alguns passos nesta direção, pois a coisa está começando a ficar empolgante.
preview
Regressões Espúrias em Python

Regressões Espúrias em Python

Regressões espúrias ocorrem quando duas séries temporais exibem um alto grau de correlação puramente por acaso, levando a resultados enganosos na análise de regressão. Em tais casos, embora as variáveis possam parecer relacionadas, a correlação é coincidencial e o modelo pode ser pouco confiável.
preview
Trabalhando com séries temporais na biblioteca DoEasy (Parte 58): séries temporais de dados de buffers de indicadores

Trabalhando com séries temporais na biblioteca DoEasy (Parte 58): séries temporais de dados de buffers de indicadores

No final do tópico sobre trabalho com séries temporais, realizaremos o armazenamento, a pesquisa e a classificação dos dados armazenados em buffers de indicadores, o que nos permitirá realizar análises posteriores com base nos valores dos indicadores criados assentes na biblioteca para nossos programas. O conceito geral por trás de todas as classes-coleções da biblioteca torna mais fácil encontrar os dados necessários na coleção correspondente, assim, o mesmo será possível na classe que será criada hoje.
preview
Desenvolvendo um sistema de Replay (Parte 49): Complicando as coisas (I)

Desenvolvendo um sistema de Replay (Parte 49): Complicando as coisas (I)

Aqui neste artigo iremos complicar um pouco as coisa. Fazendo uso do que foi visto nos artigos anteriores, iremos começar a liberar o arquivo de Template, para que o usuário possa fazer uso de um template pessoal. No entanto, irei fazer as mudanças aos poucos, visto que também irei modificar o indicador a fim de proporcionar um alivio ao MetaTrader 5.
preview
Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I

Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I

O algoritmo de simulação de têmpera é uma metaheurística inspirada no processo de têmpera de metais. Neste artigo, realizaremos uma análise detalhada do algoritmo e mostraremos como muitas concepções comuns e mitos em torno deste método de otimização popular e amplamente conhecido podem ser equivocados e incompletos. Anúncio da segunda parte do artigo: "Conheça nosso algoritmo autoral de simulação de têmpera isotrópica (Simulated Isotropic Annealing, SIA)!"
preview
Desenvolvendo um sistema de Replay (Parte 46): Projeto do Chart Trade (V)

Desenvolvendo um sistema de Replay (Parte 46): Projeto do Chart Trade (V)

Cansado de perder tempo procurando aquele arquivo, que é preciso para fazer a sua aplicação funcionar ?!?! Que tal embutir tudo no executável ? Assim você nunca irá perder tempo procurando as coisas. Sei que muitos fazem uso, exatamente daquela forma de distribuir e guardar as coisas. Mas existe uma maneira bem mais adequada. Pelo menos no que diz respeito a distribuição de executáveis e armazenamento dos mesmos. A forma que irei explicar aqui, pode vim a lhe ser de grande ajuda. Já que você pode usar o próprio MetaTrader 5 como sendo um grande ajudante, assim como o MQL5. Não é algo lá tão complexo, ou difícil de ser entendido.
preview
Desenvolvendo um sistema de Replay (Parte 27): Projeto Expert Advisor — Classe C_Mouse (I)

Desenvolvendo um sistema de Replay (Parte 27): Projeto Expert Advisor — Classe C_Mouse (I)

Neste artigo irá nascer a classe C_Mouse. Esta foi pensada de maneira que a programação, seja feita no mais alto nível quanto for possível ser feita. Mas dizer que trabalharemos em alto, ou baixo nível, nada tem haver com questões de colocarmos palavrões ou chavões no meio do código. Longe disto. Trabalhar em alto nível ou de baixo nível, quando se fala em programação, diz o quanto o programa pode ser mais simples ou mais difícil de ser lido por outro programador.
preview
Algoritmos populacionais de otimização: Evolução diferencial (Differential Evolution, DE)

Algoritmos populacionais de otimização: Evolução diferencial (Differential Evolution, DE)

Neste artigo, falaremos sobre o algoritmo que apresenta os resultados mais contraditórios de todos os examinados anteriormente, o de evolução diferencial (DE).
preview
Trabalhando com séries temporais na biblioteca DoEasy (Parte 53): classe do indicador base abstrato

Trabalhando com séries temporais na biblioteca DoEasy (Parte 53): classe do indicador base abstrato

Neste artigo, veremos a criação de uma classe de indicador abstrato que será posteriormente usada como uma classe base para a criação de objetos de indicadores padrão e personalizados da biblioteca.
preview
Desenvolvendo um sistema de Replay (Parte 29): Projeto Expert Advisor — Classe C_Mouse (III)

Desenvolvendo um sistema de Replay (Parte 29): Projeto Expert Advisor — Classe C_Mouse (III)

Agora que a classe C_Mouse foi melhorada. Podemos focar em criar uma classe que será usada para promover uma base completamente diferente de estudos. Mas como expliquei no inicio do artigo, não iremos usar herança ou polimorfismo para gerar esta nova classe. Iremos modificar, ou melhor dizendo, agregar alguns objetos novos a linha de preço. Isto neste primeiro momento, no próximo artigo mostrarei como modificar os estudos. Mas faremos isto sem mexer no código da classe C_Mouse. Sei que na pratica, isto seria mais simples ser feito usando herança ou polimorfismo. No entanto, existem técnicas diferentes para se conseguir a mesma coisa.
preview
Análise quantitativa no MQL5: implementando um algoritmo promissor

Análise quantitativa no MQL5: implementando um algoritmo promissor

Vamos explorar o que é a análise quantitativa, como os grandes players a utilizam e criar um dos algoritmos de análise quantitativa na linguagem MQL5.
preview
Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)

Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)

O FSS (Fish School Search) é um algoritmo avançado de otimização inspirado no comportamento dos peixes que nadam em cardumes. Aproximadamente 80% desses peixes nadam em comunidades organizadas de parentes, o que tem sido comprovado como uma estratégia importante para melhorar a eficiência de procura por alimento e proteção contra predadores.
preview
Algoritmos de otimização populacionais: Algoritmo do morcego

Algoritmos de otimização populacionais: Algoritmo do morcego

Hoje estudaremos o algoritmo do morcego (Bat algorithm, BA), que possui convergência incrível em funções suaves.
preview
Desenvolvendo um sistema de Replay (Parte 55): Módulo de controle

Desenvolvendo um sistema de Replay (Parte 55): Módulo de controle

Neste artigo iremos implementar o indicador de controle de forma que ele possa o sistema de mensagens que está sendo implementado. Apesar de não ser algo muito complexo de ser feito, você precisa entender alguns detalhes referentes a como fazer a inicialização deste módulo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Ciência de dados e aprendizado de máquina (Parte 11): Classificador Naive Bayes e teoria da probabilidade na negociação

Ciência de dados e aprendizado de máquina (Parte 11): Classificador Naive Bayes e teoria da probabilidade na negociação

A negociação com base em probabilidades pode ser comparada a caminhar sobre uma corda bamba - ela requer precisão, equilíbrio e uma compreensão clara do risco envolvido. No mundo do trading, a probabilidade é fundamental. É ela que determina o resultado: sucesso ou fracasso, lucro ou prejuízo. Ao aproveitar as possibilidades da probabilidade, os traders podem tomar decisões mais fundamentadas, gerenciar os riscos de maneira mais eficiente e alcançar seus objetivos financeiros. Não importa se você é um investidor experiente ou um trader iniciante, entender a probabilidade pode ser a chave para desbloquear seu potencial de negociação. Neste artigo, exploraremos o fascinante mundo do trading baseado em probabilidades e mostraremos como levar seu modo de negociar a um nível superior.
preview
Data Science e Machine Learning (Parte 24): Previsão de Séries Temporais no Forex Usando Modelos de IA Clássicos

Data Science e Machine Learning (Parte 24): Previsão de Séries Temporais no Forex Usando Modelos de IA Clássicos

Nos mercados de forex, é muito desafiador prever a tendência futura sem ter uma ideia do passado. Poucos modelos de machine learning são capazes de fazer previsões futuras considerando valores passados. Neste artigo, vamos discutir como podemos usar modelos clássicos (não específicos para séries temporais) de Inteligência Artificial para superar o mercado.
preview
Desenvolvendo um sistema de Replay — Simulação de mercado (Parte 05): Adicionando Previas

Desenvolvendo um sistema de Replay — Simulação de mercado (Parte 05): Adicionando Previas

Conseguimos desenvolver, uma forma de fazer com que o replay de mercado, fosse executado dentro de um tempo bastante realista e aceitável. Vamos continuar nosso projeto. Agora iremos adicionar dados de forma a ter um comportamento melhor do replay.
preview
Desenvolvendo um sistema de Replay (Parte 36): Ajeitando as coisas (II)

Desenvolvendo um sistema de Replay (Parte 36): Ajeitando as coisas (II)

Uma das coisas que mais pode complicar a nossa vida como programadores é o fato de supor as coisas. Neste artigo mostrarei o perigo de fazer suposições. Tanto na parte da programação em MQL5, onde você supõem que um tipo terá um dado tamanho. Assim como no uso do MetaTrader 5, onde você supõem que servidores diferentes funcionam da mesma forma.