Artigos sobre programação na linguagem MQL5

icon

Leia os artigos publicados aqui para aprender MQL5, a linguagem das estratégias de negociação. A maioria desses artigos foi escrita por vocês, membros da MQL5.community. Todos eles estão divididos em categorias para encontrar respostas rápidas relacionadas a aspectos específicos da programação: "Integração", "Testador", "Estratégias de negociação" e muito mais.

Acompanhe as novas publicações e participe de suas discussões no Fórum!

Novo artigo
recentes | melhores
preview
Usando o Algoritmo de Aprendizado de Máquina PatchTST para Prever a Ação do Preço nas Próximas 24 Horas

Usando o Algoritmo de Aprendizado de Máquina PatchTST para Prever a Ação do Preço nas Próximas 24 Horas

Neste artigo, aplicamos um algoritmo relativamente complexo de rede neural chamado PatchTST, lançado em 2023, para prever a ação do preço nas próximas 24 horas. Usaremos o repositório oficial, faremos algumas modificações, treinaremos um modelo para EURUSD e o aplicaremos para fazer previsões futuras, tanto em Python quanto em MQL5.
preview
Criando uma Interface Gráfica de Usuário Interativa em MQL5 (Parte 2): Adicionando Controles e Responsividade

Criando uma Interface Gráfica de Usuário Interativa em MQL5 (Parte 2): Adicionando Controles e Responsividade

Melhorar o painel GUI do MQL5 com recursos dinâmicos pode melhorar significativamente a experiência de negociação para os usuários. Ao incorporar elementos interativos, efeitos de hover e atualizações de dados em tempo real, o painel se torna uma ferramenta poderosa para os traders modernos.
preview
Como desenvolver um sistema de negociação baseado no indicador Bull's Power

Como desenvolver um sistema de negociação baseado no indicador Bull's Power

Bem-vindo a um novo artigo em nossa série sobre como desenvolver um sistema de negociação com base nos indicadores técnicos mais populares, aqui está um novo artigo sobre como aprender a desenvolver um sistema de negociação pelo indicador técnico Bull's Power.
preview
Python, ONNX e MetaTrader 5: Montando um modelo RandomForest com pré-processamento de dados via RobustScaler e PolynomialFeatures

Python, ONNX e MetaTrader 5: Montando um modelo RandomForest com pré-processamento de dados via RobustScaler e PolynomialFeatures

Neste artigo, vamos desenvolver um modelo de floresta aleatória usando Python. Vamos treinar esse modelo e salvá-lo como um pipeline ONNX, já incluindo etapas de pré-processamento de dados. Depois, esse modelo será aplicado diretamente no terminal do MetaTrader 5.
Gráficos na biblioteca DoEasy (Parte 94): objetos gráficos compostos, movimentação e eliminação
Gráficos na biblioteca DoEasy (Parte 94): objetos gráficos compostos, movimentação e eliminação

Gráficos na biblioteca DoEasy (Parte 94): objetos gráficos compostos, movimentação e eliminação

Neste artigo vamos começar a desenvolver os diversos eventos de um objeto gráfico composto. Analisaremos em parte a movimentação e a eliminação de um objeto gráfico composto. Hoje, estaremos, sobretudo, refinando o que foi criado no último artigo.
preview
Teoria das Categorias em MQL5 (Parte 8): Monoides

Teoria das Categorias em MQL5 (Parte 8): Monoides

Esse artigo continua a série sobre a implementação da teoria da categoria em MQL5. Aqui, apresentamos os monoides como um domínio (conjunto) que distingue a teoria da categoria de outros métodos de classificação de dados ao incorporar regras e um elemento de equivalência.
preview
Teoria das Categorias em MQL5 (Parte 12): Ordem

Teoria das Categorias em MQL5 (Parte 12): Ordem

Este artigo faz parte de uma série sobre a implementação de grafos usando a teoria das categorias no MQL5 e é dedicado à teoria da ordem (Order Theory). Consideraremos dois tipos básicos de ordenação e exploraremos como os conceitos de relação de ordem podem auxiliar os conjuntos monoidais na tomada de decisões de negociação.
preview
Expert Advisor de scalping Ilan 3.0 AI com aprendizado de máquina

Expert Advisor de scalping Ilan 3.0 AI com aprendizado de máquina

Lembra do EA Ilan 1.6 Dynamic? Vamos tentar aprimorá-lo com aprendizado de máquina! Vamos reviver esse antigo projeto neste artigo e adicionar aprendizado de máquina com uma tabela Q. Passo a passo.
preview
Redes neurais de maneira fácil (Parte 62): uso do transformador de decisões em modelos hierárquicos

Redes neurais de maneira fácil (Parte 62): uso do transformador de decisões em modelos hierárquicos

Nos últimos artigos, exploramos várias formas de usar o método Decision Transformer. Ele permite analisar não só o estado atual, mas também a trajetória de estados anteriores e as ações realizadas neles. Neste artigo, proponho que você conheça uma forma de usar este método em modelos hierárquicos.
preview
Como construir e otimizar um sistema de negociação baseado em volatilidade (Chaikin Volatility - CHV)

Como construir e otimizar um sistema de negociação baseado em volatilidade (Chaikin Volatility - CHV)

Neste artigo, vamos apresentar outro indicador baseado em volatilidade, chamado Chaikin Volatility. Vamos entender como construir um indicador personalizado, após identificar como ele pode ser usado e construído. Vamos compartilhar algumas estratégias simples que podem ser usadas e, em seguida, testá-las para entender qual delas pode ser melhor.
preview
Desenvolvendo um sistema de Replay (Parte 41): Iniciando a segunda fase (II)

Desenvolvendo um sistema de Replay (Parte 41): Iniciando a segunda fase (II)

Se tudo até aqui parecia adequado para você, significa que você de fato não está pensando no longo prazo. Onde você começa a desenvolver as aplicações e com o tempo, não precisará mais programar novas aplicações. Apenas terá que fazer com que elas trabalhem em conjunto. Vamos então ver como terminar de montar o indicador de mouse.
preview
Algoritmos de otimização populacionais: Otimização de ervas invasivas (IWO)

Algoritmos de otimização populacionais: Otimização de ervas invasivas (IWO)

A surpreendente capacidade das plantas daninhas de sobreviver em uma ampla variedade de condições foi a inspiração para o desenvolvimento de um poderoso algoritmo de otimização. O IWO (Invasive Weed Optimization) é considerado um dos melhores entre os analisados até o momento.
preview
Desenvolvendo um sistema de Replay (Parte 40): Iniciando a segunda fase (I)

Desenvolvendo um sistema de Replay (Parte 40): Iniciando a segunda fase (I)

Esta é a nova fase do sistema de replay / simulação. Nesta fase a conversa de fato irá ser seria. E o conteúdo irá ser tornar bastante denso. Peço que você leia com calma o artigo e sempre procure usar as referencias que possivelmente estarão sendo indicadas nos artigos. Isto para lhe ajudar a compreender melhor o que estará sendo explicado.
preview
Simulação de mercado (Parte 13): Sockets (VII)

Simulação de mercado (Parte 13): Sockets (VII)

Quando você desenvolve algo, seja no xlwings, ou qualquer outro pacote que nos permita ler e escrever diretamente no Excel. Você na verdade deve notar que todos os programas, funções ou procedimentos. Executam e logo finalizam a sua tarefa. Eles não ficam ali, dentro de um loop. E por mais que você tente fazer as coisas de uma forma diferente.
preview
Desenvolvendo um EA Multimoeda (Parte 13): Automação da segunda etapa — Seleção de grupos

Desenvolvendo um EA Multimoeda (Parte 13): Automação da segunda etapa — Seleção de grupos

A primeira etapa do processo automatizado de otimização já foi implementada. Para diferentes símbolos e timeframes, realizamos a otimização com base em vários critérios e armazenamos as informações dos resultados de cada execução em um banco de dados. Agora, vamos nos dedicar à seleção dos melhores grupos de conjuntos de parâmetros encontrados na primeira etapa.
preview
Redes neurais de maneira fácil (Parte 19): Regras de associação usando MQL5

Redes neurais de maneira fácil (Parte 19): Regras de associação usando MQL5

Continuamos o tópico de busca de regras de associação. No artigo anterior, consideramos os aspectos teóricos desse tipo de problema. No artigo de hoje, ensinarei a implementação do método FP-Growth usando MQL5. Também vamos testá-la com dados reais.
preview
Desenvolvimento de robô em Python e MQL5 (Parte 3): Implementação do algoritmo de negociação baseado em modelo

Desenvolvimento de robô em Python e MQL5 (Parte 3): Implementação do algoritmo de negociação baseado em modelo

Continuamos o ciclo de artigos sobre a criação de um robô de negociação em Python e MQL5. Hoje, vamos abordar a tarefa de desenvolver um algoritmo de negociação em Python.
preview
Do básico ao intermediário: União (I)

Do básico ao intermediário: União (I)

Neste artigo começaremos a ver o que seria uma união. Aqui faremos a lição de casa, experimentando as primeiras construções em que uma união poderia ser utilizada. Apesar de tudo, o que será visto aqui, é apenas a parte básica de todo um conjunto de conceitos e informações que ainda serão melhor exploradas em artigos futuros. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Criando um painel MQL5 interativo usando a classe Controls (Parte 1): Configurando o painel

Criando um painel MQL5 interativo usando a classe Controls (Parte 1): Configurando o painel

Neste artigo, vamos criar um painel de negociação interativo utilizando a classe Controls no MQL5, voltado para otimizar as operações de trading. O painel conterá um cabeçalho, botões de navegação para trading, fechamento e informações, além de botões especializados para envio de ordens e gerenciamento de posições. Ao final do artigo, teremos um painel básico pronto para futuras melhorias.
preview
Algoritmos de otimização populacionais: algoritmo de gotas de água inteligentes (Intelligent Water Drops, IWD)

Algoritmos de otimização populacionais: algoritmo de gotas de água inteligentes (Intelligent Water Drops, IWD)

Neste artigo é analisado um algoritmo interessante chamado de gotas de água inteligentes (IWD), inspirado na natureza inanimada, que simula o processo de formação do leito de um rio. As ideias desse algoritmo permitiram melhorar significativamente o líder anterior da classificação, o SDS, e o novo líder (SDSm modificado), como de costume, pode ser encontrado no arquivo do artigo.
preview
Indicador de avaliação da força e da fraqueza dos pares de moedas em MQL5 puro

Indicador de avaliação da força e da fraqueza dos pares de moedas em MQL5 puro

Estamos criando um indicador profissional para análise da força das moedas em MQL5. Neste guia passo a passo, você aprenderá a desenvolver uma poderosa ferramenta de trading com painel visual para o MetaTrader 5, a calcular a força das moedas em múltiplos timeframes (H1, H4 e D1), a implementar a atualização dinâmica de dados e a criar uma interface amigável para o usuário.
preview
Implementando um algoritmo de treinamento ARIMA em MQL5

Implementando um algoritmo de treinamento ARIMA em MQL5

Neste artigo, implementaremos um algoritmo que aplica o modelo integrado de autorregressão com média móvel (modelo Box-Jenkins) usando o método de minimização de função de Powell. Box e Jenkins afirmaram que a maioria das séries temporais pode ser modelada usando uma ou ambas das duas estruturas.
preview
Multibot no MetaTrader (Parte II): Modelo dinâmico aprimorado

Multibot no MetaTrader (Parte II): Modelo dinâmico aprimorado

Desenvolvendo o tema do artigo anterior, decidi criar um modelo mais flexível e funcional que possui maiores capacidades e pode ser usado de forma eficaz tanto em freelancing quanto como base para o desenvolvimento de EAs multicurrency e multiperíodo com a capacidade de integrar com soluções externas.
preview
Redes neurais em trading: Usando modelos de linguagem para previsão de séries temporais

Redes neurais em trading: Usando modelos de linguagem para previsão de séries temporais

Continuamos a analisar modelos de previsão de séries temporais. Neste artigo, proponho a apresentação de um algoritmo complexo baseado no uso de um modelo de linguagem previamente treinado.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 17): Tiquete e mais tiquetes (I)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 17): Tiquete e mais tiquetes (I)

Aqui vamos começar a ver como implementar algo realmente bem interessante e curioso. Mas ao mesmo tempo extremamente complicado por conta de algumas questões que muitos confundem. Mas pior do que as confundir, é o fato de que alguns operadores que se dizem profissionais, não fazem ideia a importância de tais conceitos no mercado de capital. Sim, apesar do foco aqui ser programação, entender algumas questões que envolvem operações em mercados, é de extrema valia para o que iremos começar a implementar aqui.
preview
Desenvolvendo um sistema de Replay (Parte 45): Projeto do Chart Trade (IV)

Desenvolvendo um sistema de Replay (Parte 45): Projeto do Chart Trade (IV)

O principal neste artigo, é justamente a apresentação e explicação da classe C_ChartFloatingRAD. Temos o indicador Chart Trade, funcionando de uma maneira bastante interessante. No entanto, se você notará que ainda temos um numero bastante reduzido de objetos no gráfico. E mesmo assim temos exatamente o comportamento esperado. Podendo editar os valores presentes no indicador. A pergunta é: Como isto é possível ?!?! Neste artigo você começará a entender isto.
preview
Avaliando o desempenho futuro com intervalos de confiança

Avaliando o desempenho futuro com intervalos de confiança

Neste artigo, vamos explorar o uso do bootstrapping como um meio de avaliar a eficácia futura de uma estratégia automatizada.
preview
Reimaginando Estratégias Clássicas em Python: MA Crossovers

Reimaginando Estratégias Clássicas em Python: MA Crossovers

Neste artigo, revisitamos a clássica estratégia de cruzamento de médias móveis para avaliar sua eficácia atual. Dado o tempo desde sua criação, exploramos os possíveis aprimoramentos que a IA pode trazer a essa estratégia de negociação tradicional. Ao incorporar técnicas de IA, nosso objetivo é aproveitar as capacidades preditivas avançadas para otimizar pontos de entrada e saída de operações, adaptar-se a condições de mercado variáveis e melhorar o desempenho geral em comparação com abordagens convencionais.
preview
Combine Estratégias de Análise Fundamental e Técnica no MQL5 Para Iniciantes

Combine Estratégias de Análise Fundamental e Técnica no MQL5 Para Iniciantes

Neste artigo, discutiremos como integrar princípios de seguimento de tendência e análise fundamental em um único Expert Advisor para construir uma estratégia mais robusta. Este artigo demonstrará como qualquer pessoa pode facilmente começar a construir algoritmos de trading personalizados usando MQL5.
preview
Desenvolvimento de um EA baseado na estratégia de rompimento do intervalo de consolidação em MQL5

Desenvolvimento de um EA baseado na estratégia de rompimento do intervalo de consolidação em MQL5

O artigo descreve os passos para criar um EA (Expert Advisor) que aproveita os rompimentos de preços após períodos de consolidação. Ao identificar esses intervalos e estabelecer os níveis de rompimento, os traders podem automatizar suas decisões de negociação com base nessa estratégia. O EA foi projetado para fornecer pontos claros de entrada e saída, evitando rompimentos falsos.
preview
Como desenvolver um sistema de negociação baseado no indicador Oscilador Acelerador

Como desenvolver um sistema de negociação baseado no indicador Oscilador Acelerador

Um novo artigo da nossa série sobre como criar sistemas de negociação simples pelos indicadores técnicos mais populares. Nós aprenderemos sobre o indicador Oscilador Acelerador e aprenderemos como desenvolver um sistema de negociação usando-o.
preview
Redes neurais de maneira fácil (Parte 92): Previsão adaptativa nas áreas de frequência e tempo

Redes neurais de maneira fácil (Parte 92): Previsão adaptativa nas áreas de frequência e tempo

Os autores do método FreDF confirmaram experimentalmente a vantagem da previsão combinada nas áreas de frequência e tempo. No entanto, o uso de um hiperparâmetro de ponderação não é ideal para séries temporais não estacionárias. Neste artigo, proponho que você conheça um método de combinação adaptativa de previsões nas áreas de frequência e tempo.
preview
Do básico ao intermediário: Diretiva Include

Do básico ao intermediário: Diretiva Include

Neste artigo, vamos falar de uma diretiva de compilação, muito utilizada nos mais diversos códigos que você poderá ver em MQL5. Apesar desta diretiva de compilação ser explicada aqui de maneira bem básica e superficial. É importante que comecemos a entender como usar ela. Já que em breve ela será indispensável para continuarmos em direção a um nível de programação maior. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Redes neurais em trading: Detecção adaptativa de anomalias de mercado (Conclusão)

Redes neurais em trading: Detecção adaptativa de anomalias de mercado (Conclusão)

Continuamos a construção dos algoritmos que formam a base do DADA, um framework avançado para detecção de anomalias em séries temporais. Essa abordagem permite distinguir, de maneira eficiente, as flutuações aleatórias dos desvios realmente significativos. Ao contrário dos métodos clássicos, o DADA se adapta dinamicamente a diferentes tipos de dados, selecionando o nível ideal de compressão para cada caso específico.
preview
Teoria das Categorias em MQL5 (Parte 23): uma nova perspectiva sobre a média móvel exponencial dupla

Teoria das Categorias em MQL5 (Parte 23): uma nova perspectiva sobre a média móvel exponencial dupla

Neste artigo, continuamos a explorar indicadores de negociação populares sob uma nova ótica. Vamos processar a composição horizontal de transformações naturais. O melhor indicador para isso é a média móvel exponencial dupla (Double Exponential Moving Average, DEMA).
preview
Validação cruzada e noções básicas de inferência causal em modelos CatBoost, exportação para o formato ONNX

Validação cruzada e noções básicas de inferência causal em modelos CatBoost, exportação para o formato ONNX

Este artigo propõe um método autoral para a criação de robôs usando aprendizado de máquina.
preview
Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído

Em um dos artigos desta série, já nos iniciamos no método aprendizado Q, que calcula a média da recompensa para cada ação. Em 2017, foram apresentados 2 trabalhos simultâneos, que tiveram sucesso quanto ao estudo da função de distribuição de recompensas. Vamos considerar a possibilidade de usar essa tecnologia para resolver nossos problemas.
preview
Desenvolvendo um sistema de Replay (Parte 34): Sistema de Ordens (III)

Desenvolvendo um sistema de Replay (Parte 34): Sistema de Ordens (III)

Vamos neste artigo concluir a primeira fase da construção. Será algo relativamente rápido, mas explicarei detalhes que podem não ter sido comentados no passado. Mas ainda assim aqui explicarei algumas coisas que muitos não entender por que são como são. Um destes casos é o Mouse. Você sabe o motivo de ter que pressionar a tecla Shift ou Ctrl no teclado ?!?!
preview
Ciência de Dados e ML (Parte 27): Redes Neurais Convolucionais (CNNs) em Bots de Trading no MetaTrader 5 — Vale a Pena?

Ciência de Dados e ML (Parte 27): Redes Neurais Convolucionais (CNNs) em Bots de Trading no MetaTrader 5 — Vale a Pena?

As Redes Neurais Convolucionais (CNNs) são renomadas por sua capacidade de detectar padrões em imagens e vídeos, com aplicações em diversos campos. Neste artigo, exploramos o potencial das CNNs para identificar padrões valiosos nos mercados financeiros e gerar sinais de trading eficazes para bots de negociação no MetaTrader 5. Vamos descobrir como essa técnica de aprendizado profundo pode ser aproveitada para decisões de trading mais inteligentes.
preview
DoEasy. Controles (Parte 14): Novo algoritmo para nomear elementos gráficos. Continuando o trabalho no objeto WinForms TabControl

DoEasy. Controles (Parte 14): Novo algoritmo para nomear elementos gráficos. Continuando o trabalho no objeto WinForms TabControl

Neste artigo, elaboraremos um novo algoritmo para nomear todos os elementos gráficos que permitem criar gráficos personalizados, e continuaremos desenvolvendo o objeto WinForms TabControl.