Artigos sobre programação na linguagem MQL5

icon

Leia os artigos publicados aqui para aprender MQL5, a linguagem das estratégias de negociação. A maioria desses artigos foi escrita por vocês, membros da MQL5.community. Todos eles estão divididos em categorias para encontrar respostas rápidas relacionadas a aspectos específicos da programação: "Integração", "Testador", "Estratégias de negociação" e muito mais.

Acompanhe as novas publicações e participe de suas discussões no Fórum!

Novo artigo
recentes | melhores
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 07): Primeiras melhorias (II)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 07): Primeiras melhorias (II)

No artigo anterior fizemos a correção de alguns pontos, e adicionamos alguns testes no nosso sistema de replay, estes tentam garantir a maior estabilidade quanto for possível obter, ao mesmo tempo iniciamos a criação e o uso de um arquivo de configuração para o sistema de replay.
preview
Como desenvolver um sistema de negociação baseado no indicador Alligator

Como desenvolver um sistema de negociação baseado no indicador Alligator

Neste artigo, completaremos nossa série sobre como projetar um sistema de negociação baseado no indicador técnico mais popular. Nós aprenderemos como criar um sistema de negociação baseado no indicador Alligator.
preview
Implementando o fator Janus em MQL5

Implementando o fator Janus em MQL5

Gary Anderson desenvolveu um método de análise de mercado baseado em uma teoria que chamou de fator Janus. Essa teoria descreve um conjunto de indicadores que podem ser usados ​​para identificar tendências e avaliar o risco de mercado. Neste artigo, vamos implementar essas ferramentas no MQL5.
Trabalhando com preços na biblioteca DoEasy (Parte 60): lista-série de dados de dados de tick do símbolo
Trabalhando com preços na biblioteca DoEasy (Parte 60): lista-série de dados de dados de tick do símbolo

Trabalhando com preços na biblioteca DoEasy (Parte 60): lista-série de dados de dados de tick do símbolo

Neste artigo, criaremos uma lista para armazenar dados de tick de um símbolo e verificaremos tal criação e respectiva recepção de dados a partir dela no EA. Essas listas de dados de tick - separadamente para cada símbolo usado - formarão uma coleção de dados de tick.
preview
Ciência de dados e Aprendizado de Máquina (parte 09): O algoritmo K-vizinhos mais próximos (KNN)

Ciência de dados e Aprendizado de Máquina (parte 09): O algoritmo K-vizinhos mais próximos (KNN)

Este é um algoritmo preguiçoso que não aprende com o conjunto de dados de treinamento, ele armazena o conjunto de dados e age imediatamente quando ele recebe uma nova amostra. Por mais simples que ele seja, ele é usado em uma variedade de aplicações do mundo real
preview
Redes neurais de maneira fácil (Parte 26): aprendizado por reforço

Redes neurais de maneira fácil (Parte 26): aprendizado por reforço

Continuamos a estudar métodos de aprendizado de máquina. Com este artigo, começamos outro grande tópico chamado aprendizado por reforço. Essa abordagem permite que os modelos estabeleçam certas estratégias para resolver as tarefas. E esperamos que essa propriedade inerente ao aprendizado de reforço abra novos horizontes para a construção de estratégias de negociação.
preview
Dominando o ONNX: Ponto de virada para traders MQL5

Dominando o ONNX: Ponto de virada para traders MQL5

Mergulhe no mundo do ONNX, um poderoso formato aberto para compartilhar modelos de aprendizado de máquina. Descubra como o uso do ONNX pode revolucionar a negociação algorítmica em MQL5, permitindo que os traders integrem sem obstáculos modelos avançados de inteligência artificial e elevem suas estratégias a um novo patamar. Desvende os segredos da compatibilidade entre plataformas e aprenda a desbloquear todo o potencial do ONNX em sua negociação no MQL5. Melhore sua negociação com este guia detalhado sobre ONNX.
preview
Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI (Parte 5): Escolhendo o Algoritmo do agente

Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI (Parte 5): Escolhendo o Algoritmo do agente

Este capítulo da série aborda algoritmos de aprendizado por reforço, focando em Q-Learning, Deep Q-Network (DQN), e Proximal Policy Optimization (PPO). Explora como essas técnicas podem ser integradas para melhorar a automação de tarefas, detalhando suas características, vantagens, e aplicabilidades práticas. A seleção do algoritmo mais adequado é vista como crucial para otimizar a eficiência operacional em ambientes dinâmicos e incertos, prometendo discussões futuras sobre a implementação prática e teórica desses métodos.
preview
Experimentos com redes neurais (Parte 5): Normalização de parâmetros de entrada para alimentar a rede neural

Experimentos com redes neurais (Parte 5): Normalização de parâmetros de entrada para alimentar a rede neural

As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
preview
Algoritmos de otimização populacionais: Otimização de colônia de formigas (ACO)

Algoritmos de otimização populacionais: Otimização de colônia de formigas (ACO)

Desta vez, vamos dar uma olhada no algoritmo de otimização de colônia de formigas ("Ant Colony optimization algorithm", em inglês). O algoritmo é muito interessante e ambíguo. Trata-se de uma tentativa de criar um novo tipo de ACO.
preview
Como criar um indicador personalizado True Strength Index usando MQL5

Como criar um indicador personalizado True Strength Index usando MQL5

Apresento um novo artigo sobre como criar um indicador personalizado. Desta vez, trabalharemos com o True Strength Index (TSI) e criaremos um Expert Advisor com base nele.
preview
Redes neurais de maneira fácil (Parte 17): Redução de dimensionalidade

Redes neurais de maneira fácil (Parte 17): Redução de dimensionalidade

Continuamos a estudar modelos de inteligência artificial, em particular, algoritmos de aprendizado não supervisionados. Já nos encontramos com um dos algoritmos de agrupamento. E neste artigo quero compartilhar com vocês outra maneira de resolver os problemas de redução de dimensionalidade.
Gráficos na biblioteca do DoEasy (Parte 92): classe de memória de objetos gráficos padrão. Histórico de mudanças de propriedades do objeto
Gráficos na biblioteca do DoEasy (Parte 92): classe de memória de objetos gráficos padrão. Histórico de mudanças de propriedades do objeto

Gráficos na biblioteca do DoEasy (Parte 92): classe de memória de objetos gráficos padrão. Histórico de mudanças de propriedades do objeto

Neste artigo, criaremos uma classe de memória de objeto gráfico padrão. Com ela conseguiremos salvar os estados do objeto quando modificado, o que, por sua vez, nós permite retornar a estados anteriores do objeto gráfico a qualquer momento.
preview
Mais sobre o sistema Murray

Mais sobre o sistema Murray

Os sistemas gráficos de análise de preços são amplamente reconhecidos e apreciados pelos traders. Neste artigo, irei abordar o sistema Murray em sua totalidade, que engloba não apenas os renomados níveis, mas também outras técnicas úteis para avaliar a posição atual do preço e tomar decisões de negociação.
preview
Algoritmos de otimização populacional: algoritmos de estratégias evolutivas (Evolution Strategies, (μ,λ)-ES e (μ+λ)-ES)

Algoritmos de otimização populacional: algoritmos de estratégias evolutivas (Evolution Strategies, (μ,λ)-ES e (μ+λ)-ES)

Neste artigo, vamos falar sobre um grupo de algoritmos de otimização conhecidos como "Estratégias Evolutivas" (Evolution Strategies ou ES). Eles são alguns dos primeiros algoritmos que usam princípios de evolução para encontrar soluções ótimas. Vamos mostrar as mudanças feitas nas versões clássicas das ES, além de revisar a função de teste e a metodologia de avaliação dos algoritmos.
preview
Como desenvolver um sistema de negociação baseado no indicador MFI

Como desenvolver um sistema de negociação baseado no indicador MFI

O novo artigo de nossa série sobre como projetar um sistema de negociação baseado nos indicadores técnicos mais populares considera um novo indicador técnico - o Índice de Fluxo de Dinheiro (MFI). Estudaremos este indicador em detalhes e aprenderemos a desenvolver um sistema de negociação simples utilizando a linguagem MQL5 para, posteriormente, executá-lo na MetaTrader 5.
preview
Desenvolvendo um agente de Aprendizado por Reforço em MQL5.com Integração RestAPI(Parte 2): Funções MQL5 para Interação HTTP com API REST do Jogo da Velha

Desenvolvendo um agente de Aprendizado por Reforço em MQL5.com Integração RestAPI(Parte 2): Funções MQL5 para Interação HTTP com API REST do Jogo da Velha

O artigo detalha como MQL5 pode interagir com Python e FastAPI, usando chamadas HTTP em MQL5 para se comunicar com um jogo da velha em Python. Discute a criação de uma API com FastAPI para essa integração e inclui um script de teste em MQL5, destacando a versatilidade do MQL5, a simplicidade do Python e a eficiência do FastAPI na conexão de diferentes tecnologias para soluções inovadoras.
preview
Redes neurais de maneira fácil (Parte 88): Codificador denso de séries temporais (TiDE)

Redes neurais de maneira fácil (Parte 88): Codificador denso de séries temporais (TiDE)

O desejo de obter previsões mais precisas leva os pesquisadores a complicar os modelos de previsão. Isso, por sua vez, aumenta os custos de treinamento e manutenção do modelo. Mas será que isso sempre é justificado? Neste artigo, proponho que você conheça um algoritmo que utiliza a simplicidade e a velocidade dos modelos lineares, e demonstra resultados no nível dos melhores com uma arquitetura mais complexa.
preview
Criando uma Interface Gráfica de Usuário Interativa no MQL5 (Parte 1): Criando o Painel

Criando uma Interface Gráfica de Usuário Interativa no MQL5 (Parte 1): Criando o Painel

Este artigo explora os passos fundamentais para criar e implementar um painel de Interface Gráfica de Usuário (GUI) utilizando a Linguagem MetaQuotes 5 (MQL5). Painéis utilitários personalizados melhoram a interação do usuário no trading, simplificando tarefas comuns e visualizando informações essenciais de trading. Ao criar painéis personalizados, os traders podem otimizar seu fluxo de trabalho e economizar tempo durante as operações de trading.
preview
Desenvolvendo um EA de negociação do zero (Parte 27): Em direção ao futuro (II)

Desenvolvendo um EA de negociação do zero (Parte 27): Em direção ao futuro (II)

Vamos continuar indo em direção a um sistema mais completo de ordens direto no gráfico. Então neste artigo irei mostrar uma forma de você corrigir, ou melhor dizendo fazer com que o sistema de ordens fique mais intuitivo.
preview
Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI(Parte 1): Usando RestAPIs em MQL5

Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI(Parte 1): Usando RestAPIs em MQL5

Este artigo aborda a importância das APIs (Interfaces de Programação de Aplicativos) na comunicação entre diferentes aplicativos e sistemas de software. Ele destaca o papel das APIs na simplificação da interação entre aplicativos, permitindo que eles compartilhem dados e funcionalidades de maneira eficiente.
preview
Trabalhando com séries temporais na biblioteca DoEasy (Parte 54): classes herdeiras do indicador base abstrato

Trabalhando com séries temporais na biblioteca DoEasy (Parte 54): classes herdeiras do indicador base abstrato

Neste artigo, analisaremos a criação de classes de objetos herdeiros do indicador base abstrato. Esses objetos nos darão acesso à capacidade de criar EAs de indicador, coletar e receber estatísticas sobre valores de dados de diferentes indicadores e preços. Também criaremos uma coleção de objetos-indicadores a partir da qual será possível acessar as propriedades e dados de cada indicador criado no programa.
preview
Fatorando Matrizes — O Básico

Fatorando Matrizes — O Básico

Como o intuito aqui é ser didático. Vou manter a coisa no seu padrão mais simples. Ou seja, iremos implementar apenas e somente o que será preciso. A multiplicação de matrizes. E você verá que isto será o suficiente para simular a multiplicação de uma matriz por um escalar. A grande dificuldade que muita gente tem em implementar um código usando fatoração de matrizes, é que diferente de uma fatoração escalar, onde em quase todos os casos a ordem dos fatores não altera o resultado. Quando se usa matrizes, a coisa não é bem assim.
preview
Desenvolvendo um sistema de Replay — Simulação de mercado (Parte 03):  Ajustando as coisas (I)

Desenvolvendo um sistema de Replay — Simulação de mercado (Parte 03): Ajustando as coisas (I)

Vamos dar uma ajeitada nas coisas, pois este começo não está sendo um dos melhores. Se não fizermos isto agora, vamos ter problemas logo, logo.
preview
DoEasy. Controles (Parte 27): Continuamos a trabalhar no objeto WinForms "ProgressBar"

DoEasy. Controles (Parte 27): Continuamos a trabalhar no objeto WinForms "ProgressBar"

Neste artigo, continuaremos desenvolvendo o controle ProgressBar. Criaremos a funcionalidade para gerenciar a barra de progresso e os efeitos visuais.
preview
Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I

Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I

O algoritmo de simulação de têmpera é uma metaheurística inspirada no processo de têmpera de metais. Neste artigo, realizaremos uma análise detalhada do algoritmo e mostraremos como muitas concepções comuns e mitos em torno deste método de otimização popular e amplamente conhecido podem ser equivocados e incompletos. Anúncio da segunda parte do artigo: "Conheça nosso algoritmo autoral de simulação de têmpera isotrópica (Simulated Isotropic Annealing, SIA)!"
preview
Preparação de indicadores com vários símbolos/períodos

Preparação de indicadores com vários símbolos/períodos

Neste artigo, examinaremos os princípios para criar indicadores com vários símbolos/períodos e recuperar dados deles dentro de EAs e indicadores. Veremos as nuances mais importantes ao usar multi-indicadores em EAs e indicadores, e sua plotagem mediante buffers de indicador personalizado.
preview
Redes neurais de maneira fácil (Parte 86): Transformador em forma de U

Redes neurais de maneira fácil (Parte 86): Transformador em forma de U

Continuamos a analisar algoritmos de previsão de séries temporais. E neste artigo, proponho que você conheça o método U-shaped Transformer.
preview
Desenvolvendo um sistema de Replay (Parte 66): Dando play no serviço (VII)

Desenvolvendo um sistema de Replay (Parte 66): Dando play no serviço (VII)

Aqui neste artigo, vamos implementar uma primeira solução, para que possamos saber o momento em que uma nova barra poderá vim a surgir no gráfico. Esta solução se adequa a diversas situações. Porém entender como a mesma foi desenvolvida pode lhe ajudar a entender diversas questões. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI (Parte 3): Criando jogadas automáticas e Scripts de Teste em MQL5

Desenvolvendo um agente de Aprendizado por Reforço em MQL5 com Integração RestAPI (Parte 3): Criando jogadas automáticas e Scripts de Teste em MQL5

Este artigo explora a implementação de jogadas automáticas no jogo da velha Python, integrado com funções MQL5 e testes unitários. O objetivo é aprimorar a interatividade do jogo e garantir a robustez do sistema através de testes MQL5. Ele aborda desde o desenvolvimento da lógica de jogo até a integração e testes práticos, culminando na criação de um ambiente de jogo dinâmico e um sistema integrado confiável.
preview
Arbitragem triangular com previsões

Arbitragem triangular com previsões

Este artigo simplifica a arbitragem triangular, mostrando como usar previsões e softwares especializados para negociar moedas de forma mais inteligente, mesmo se você for novo no mercado. Pronto para negociar com expertise?
preview
Criação de um Expert Advisor simples em várias moedas usando MQL5 (Parte 4): Média móvel triangular — Sinais do indicador

Criação de um Expert Advisor simples em várias moedas usando MQL5 (Parte 4): Média móvel triangular — Sinais do indicador

Neste artigo, por EA multimoeda, entendemos um robô investidor, ou um robô de negociação, que pode negociar (abrir/fechar ordens, gerenciar ordens, por exemplo, do tipo trailing stop-loss e trailing profit) mais de um par de moedas em um gráfico. Desta vez, usaremos apenas um indicador, em particular a média móvel triangular em um ou mais timeframes, ou escalas de tempo.
preview
Criando um Limitador de Drawdown Diário EA em MQL5

Criando um Limitador de Drawdown Diário EA em MQL5

O artigo discute, de forma detalhada, como implementar a criação de um Expert Advisor (EA) baseado no algoritmo de negociação. Isso ajuda a automatizar o sistema em MQL5 e a controlar o Drawdown Diário.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 13): Nascimento do SIMULADOR (III)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 13): Nascimento do SIMULADOR (III)

Aqui iremos dar uma leve otimizada nas coisas. Isto para facilitar o que iremos fazer no próximo artigo. Mas também irei explicar como você pode visualizar o que o simulador está gerando em termos de aleatoriedade.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 14): Nascimento do SIMULADOR (IV)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 14): Nascimento do SIMULADOR (IV)

Neste artigo continuaremos a fase de desenvolvimento do simulador. Mas agora, vamos ver como criar de fato um movimento do tipo RANDOM WALK. Este tipo de movimentação é muito interessante, pois tudo envolvido no mercado de capitais tem como base este tipo de movimentação. Além do mais você vai começar a entender alguns conceitos importantes para quem faz estáticas de mercado.
preview
Redes neurais de maneira fácil (Parte 61): O problema do otimismo no aprendizado por reforço off-line

Redes neurais de maneira fácil (Parte 61): O problema do otimismo no aprendizado por reforço off-line

Durante o aprendizado off-line, otimizamos a política do Agente com base nos dados da amostra de treinamento. A estratégia resultante confere ao Agente confiança em suas ações. Mas, essa confiança nem sempre é justificada, já que pode acarretar maiores riscos durante a utilização prática do modelo. Hoje vamos examinar um dos métodos para reduzir esses riscos.
preview
Implementação do teste aumentado de Dickey-Fuller no MQL5

Implementação do teste aumentado de Dickey-Fuller no MQL5

Neste artigo, vamos mostrar como implementar o teste aumentado de Dickey-Fuller e sua aplicação para realizar testes de cointegração usando o método de Engle-Granger.
Gráficos na biblioteca DoEasy (Parte 87): coleção de objetos gráficos, controlamos a modificação de propriedades de objetos em todos os gráficos abertos
Gráficos na biblioteca DoEasy (Parte 87): coleção de objetos gráficos, controlamos a modificação de propriedades de objetos em todos os gráficos abertos

Gráficos na biblioteca DoEasy (Parte 87): coleção de objetos gráficos, controlamos a modificação de propriedades de objetos em todos os gráficos abertos

No artigo, continuaremos a trabalhar no rastreamento dos eventos de objetos gráficos padrão e na criação de funcionalidades que permitem controlar as alterações nas propriedades dos objetos gráficos localizados em qualquer gráfico aberto no terminal.
preview
Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 6): Dois indicadores RSI cruzam suas linhas

Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 6): Dois indicadores RSI cruzam suas linhas

Por Expert Advisor multimoeda, nesta seção, entende-se um EA ou robô de trading que utiliza dois indicadores RSI com linhas cruzadas, isto é, um RSI rápido que cruza um RSI lento.
preview
Redes neurais de maneira fácil (Parte 84): normalização reversível (RevIN)

Redes neurais de maneira fácil (Parte 84): normalização reversível (RevIN)

Há muito já aprendemos que o pré-processamento dos dados brutos desempenha um grande papel na estabilidade do treinamento do modelo. E, para o processamento online de dados "brutos", frequentemente usamos a camada de normalização em lote. No entanto, às vezes surge a necessidade de um procedimento inverso. Um dos possíveis métodos para resolver tais tarefas é discutido neste artigo.