
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 16): Um novo sistema de classes
Precisamos nos organizar melhor. O código está crescendo e se não o organizarmos agora, será impossível fazer isto depois. Então agora vamos dividir para conquistar. O fato de que o MQL5, nos permite usar classes, nos ajudará nesta tarefa. Mas para fazer isto é preciso que você tenha algum conhecimento sobre algumas coisas envolvidas nas classes. E talvez a que mais deixe, aspirantes e iniciantes perdidos seja a herança. Então neste artigo, irei de forma prática e simples como fazer uso de tais mecanismos.

Teoria das Categorias em MQL5 (Parte 14): funtores com ordem linear
Este artigo, parte de uma série de artigos sobre a implementação da teoria das categorias no MQL5, é dedicado aos funtores. Vamos explorar como a ordem linear pode ser mapeada em um conjunto de dados através dos funtores ao analisar dois conjuntos de dados que, à primeira vista, parecem não ter nenhuma conexão entre si.

Algoritmos de otimização populacionais: salto de sapo embaralhado
O artigo apresenta uma descrição detalhada do algoritmo salto de sapo embaralhado (Shuffled Frog Leaping Algorithm, SFL) e suas capacidades na solução de problemas de otimização. O algoritmo SFL é inspirado no comportamento dos sapos em seu ambiente natural e oferece uma nova abordagem para a otimização de funções. O algoritmo SFL é uma ferramenta eficaz e flexível, capaz de lidar com diversos tipos de dados e alcançar soluções ótimas.

Ciência de dados e Aprendizado de Máquina (parte 10): Regressão de Ridge
A regressão de Ridge é uma técnica simples para reduzir a complexidade do modelo e evitar o ajuste excessivo que pode resultar da regressão linear simples

Ciência de Dados e Aprendizado de Máquina — Redes Neurais (Parte 02): Arquitetura das Redes Neurais Feed Forward
Há detalhes a serem abordadas na rede neural feed-forward antes de finalizarmos este assunto, a arquitetura é uma delas. Vamos ver como nós podemos construir e desenvolver uma rede neural flexível para as nossas entradas, o número de camadas ocultas e os nós para cada rede.

Desenvolvendo um sistema de Replay (Parte 63): Dando play no serviço (IV)
Neste arquivo vamos finalmente resolver os problemas de simulação dos ticks, em uma barra de um minuto, de forma que eles possam conviver junto com ticks reais. Isto para evitar que venhamos a ter problemas depois. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Desenvolvendo um sistema de Replay (Parte 67): Refinando o Indicador de controle
Neste artigo mostrarei o que um pouco de refinamento no código é capaz de fazer. Tal refinamento tem como objetivo tornar mais simples o nosso código. Fazer um maior uso das chamadas de biblioteca do MQL5. Mas principalmente fazer com que o nosso código se torne bem mais estável, seguro e fácil de ser usado por outras classe, ou outros códigos que por ventura construiremos. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Algoritmos de otimização populacional: Método Nelder-Mead (NM)
O artigo apresenta um estudo completo do método Nelder-Mead explicando como o simplex — o espaço dos parâmetros da função — muda e se reestrutura a cada iteração para alcançar a solução ótima, e também descreve como melhorar este método.

Perceptron Multicamadas e o Algoritmo Backpropagation (Parte 3): Integrando ao Testador de estratégias - Visão Geral (I)
O perceptron multicamadas é uma evolução do perceptron simples, capaz de resolver problemas não linearmente separáveis. Juntamente com o algoritmo backpropagation, é possível treinar essa rede neural de forma eficiente. Na terceira parte da série sobre perceptron multicamadas e backpropagation, vamos mostrar como integrar essa técnica ao testador de estratégias. Essa integração permitirá a utilização de análise de dados complexos e melhores decisões para otimizar as estratégias de negociação. Nesta visão geral, discutiremos as vantagens e os desafios da implementação desta técnica.

Desenvolvendo um sistema de Replay (Parte 48): Entendendo e compreendendo alguns conceitos
Que tal aprender algo novo. Neste artigo você irá aprender como transformar Scripts e Serviços e qual a utilidade em se fazer isto.

A sazonalidade no mercado de moedas e suas possibilidades de uso
Todo indivíduo moderno está familiarizado com o conceito de sazonalidade, por exemplo, todos nós estamos acostumados com o aumento dos preços de vegetais frescos no inverno ou o aumento do preço dos combustíveis durante fortes geadas, mas poucos sabem que existem padrões semelhantes no mercado de moedas.

Implementação do teste aumentado de Dickey-Fuller no MQL5
Neste artigo, vamos mostrar como implementar o teste aumentado de Dickey-Fuller e sua aplicação para realizar testes de cointegração usando o método de Engle-Granger.

DoEasy. Controles (Parte 6): Controle "Painel", redimensionamento automático do contêiner para adequá-lo ao seu conteúdo
Neste artigo, continuaremos trabalhando no objeto WinForms "Painel" e geraremos seu redimensionamento automático em função do tamanho geral dos objetos Dock localizados dentro dele. Além disso, adicionaremos novas propriedades ao objeto de biblioteca "Símbolo".

Redes neurais de maneira fácil (Parte 14): Agrupamento de dados
Devo confessar que já se passou mais de um ano desde que o último artigo foi publicado. Em um período tão longo como esse, é possível reconsiderar muitas coisas, desenvolver novas abordagens. E neste novo artigo, gostaria de me afastar um pouco do método de aprendizado supervisionado usado anteriormente, e sugerir um pouco de mergulho nos algoritmos de aprendizado não supervisionado. E, em particular, desejaria analisar um dos algoritmos de agrupamento, o k-médias (k-means).

Modelos prontos para integrar indicadores nos Expert Advisors (Parte 2): Indicadores de volume e Bill Williams
Neste artigo, examinaremos os indicadores padrão das categorias Volumes e Bill Williams. Criaremos modelos prontos a serem usados em Expert Advisors, modelos esses que incluirão: declaração e configuração de parâmetros, inicialização/desinicialização de indicadores e recuperação de dados/sinais a partir de buffers de indicador em EAs.

Simulação de mercado (Parte 19): Iniciando o SQL (II)
Como eu disse no primeiro artigo sobre SQL, não faz sentido você perder tempo, programado rotinas e mais rotinas a fim de conseguir, gerar ou produzir algo que o próprio SQL já contém. Porém sem saber o básico do básico, você não conseguirá fazer nada em SQL, a fim de aproveitar de alguma forma o que esta ferramenta tem a nos oferecer. Sendo assim, aqui neste artigo iremos ver como fazer para conseguir executar tarefas primordiais a serem feitas em bancos de dados.

Simulação de mercado (Parte 19): Iniciando o SQL (II)
Como eu disse no primeiro artigo sobre SQL, não faz sentido você perder tempo, programado rotinas e mais rotinas a fim de conseguir, gerar ou produzir algo que o próprio SQL já contém. Porém sem saber o básico do básico, você não conseguirá fazer nada em SQL, a fim de aproveitar de alguma forma o que esta ferramenta tem a nos oferecer. Sendo assim, aqui neste artigo iremos ver como fazer para conseguir executar tarefas primordiais a serem feitas em bancos de dados.


Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 10): Usando apenas dados reais na replay
Aqui vamos ver como você pode utilizar dados mais fieis ( tickets negociados ) no sistema de replay, sem necessariamente ter que se preocupar se eles estão ou não ajustados.

Arbitragem triangular com previsões
Este artigo simplifica a arbitragem triangular, mostrando como usar previsões e softwares especializados para negociar moedas de forma mais inteligente, mesmo se você for novo no mercado. Pronto para negociar com expertise?

Trabalhando com séries temporais na biblioteca DoEasy (Parte 51): indicadores padrão multiperíodos multissímbolos compostos
Neste artigo, vamos completar o desenvolvimento de objetos para indicadores padrão multissímbolos multiperíodos. Usando o indicador padrão Ichimoku Kinko Hyo como exemplo, analisaremos a criação de indicadores personalizados complexos que têm buffers desenhados auxiliares para exibir dados num gráfico.

Redes neurais de maneira fácil (Parte 21): Autocodificadores variacionais (VAE)
No último artigo, analisamos o algoritmo do autocodificador. Como qualquer outro algoritmo, tem suas vantagens e desvantagens. Na implementação original, o autocodificador executa a tarefa de separar os objetos da amostra de treinamento o máximo possível. E falaremos sobre como lidar com algumas de suas deficiências neste artigo.

Receitas MQL5 — Banco de dados de eventos macroeconômicos
Este artigo explora como trabalhar com bancos de dados baseados no mecanismo SQLite. Com o objetivo de oferecer conveniência e utilizar eficientemente os princípios da OOP, foi criada a classe CDatabase. Essa classe é responsável pela criação e gerenciamento de um banco de dados de eventos macroeconômicos. Além disso, são apresentados exemplos de como utilizar diferentes métodos da classe CDatabase.


Outras classes na biblioteca DoEasy (Parte 70): extensão da funcionalidade e atualização automática da coleção de objetos-gráficos
Neste artigo, vamos expandir a funcionalidade dos objetos-gráficos, criaremos a navegação em gráficos, geraremos capturas de tela, salvaremos e aplicaremos modelos aos gráficos. Faremos também uma atualização automática da coleção de objetos-gráficos, suas janelas e indicadores.

Metamodelos em aprendizado de máquina e negociação: Tempo original das ordens de negociação
Metamodelos em aprendizado de máquina: Criação automática de sistemas de negociação com quase nenhum envolvimento humano, o próprio modelo decide como operar e quando operar.

Ciência de Dados e Aprendizado de Máquina (Parte 08): Agrupamento K-Means em MQL5
A mineração de dados é crucial para um cientista de dados e um trader porque, muitas vezes, os dados não são tão diretos quanto pensamos, o olho humano não consegue entender o padrão subjacente menor e as relações no conjunto de dados, talvez o algoritmo K-means pode nos ajudar com isso. Vamos descobrir...

DoEasy. Controles (Parte 4): Controle "Painel", parâmetros Padding e Dock
Neste artigo, vamos gerar o funcionamento de alguns parâmetros de painel, nomeadamente Padding (margens internas/campos para todos os lados do elemento) e Dock (a forma como o objeto está localizado dentro do contêiner).

Algoritmos de otimização populacional: algoritmos de estratégias evolutivas (Evolution Strategies, (μ,λ)-ES e (μ+λ)-ES)
Neste artigo, vamos falar sobre um grupo de algoritmos de otimização conhecidos como "Estratégias Evolutivas" (Evolution Strategies ou ES). Eles são alguns dos primeiros algoritmos que usam princípios de evolução para encontrar soluções ótimas. Vamos mostrar as mudanças feitas nas versões clássicas das ES, além de revisar a função de teste e a metodologia de avaliação dos algoritmos.

Regressões Espúrias em Python
Regressões espúrias ocorrem quando duas séries temporais exibem um alto grau de correlação puramente por acaso, levando a resultados enganosos na análise de regressão. Em tais casos, embora as variáveis possam parecer relacionadas, a correlação é coincidencial e o modelo pode ser pouco confiável.

Construindo e testando sistemas de negociação com o Canal Keltner
Neste artigo, tentaremos fornecer sistemas de negociação usando um conceito muito importante no mercado financeiro, que é a volatilidade. Forneceremos um sistema de negociação baseado no indicador Canal Keltner após compreendê-lo e como podemos codificá-lo e criar um sistema de negociação baseado em uma estratégia simples de negociação e testá-lo em diferentes ativos.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 58): séries temporais de dados de buffers de indicadores
No final do tópico sobre trabalho com séries temporais, realizaremos o armazenamento, a pesquisa e a classificação dos dados armazenados em buffers de indicadores, o que nos permitirá realizar análises posteriores com base nos valores dos indicadores criados assentes na biblioteca para nossos programas. O conceito geral por trás de todas as classes-coleções da biblioteca torna mais fácil encontrar os dados necessários na coleção correspondente, assim, o mesmo será possível na classe que será criada hoje.

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 09): Eventos Customizados
Aqui vamos ver como disparar eventos customizados e melhorar a questão sobre como o indicador informa o status do serviço de replay/simulação.

Desenvolvendo um sistema de Replay (Parte 38): Pavimentando o Terreno (II)
Muita gente que se diz programador de MQL5, não tem as bases que estarei apresentando aqui, neste artigo. Muitos consideram o MQL5 algo limitado, mas tudo isto se deve a falta de conhecimento. Então, não fique com vergonha por não saber. Mas tenha vergonha de não perguntar. Mas o simples fato, de forçar, e obrigar o MetaTrader 5 a não permitir que um indicador seja duplicado. Não nos dá de maneira alguma meios de efetivar uma comunicação bilateral entre o indicador e o EA. Ainda estamos um pouco longe disto. Mas o simples fato de que o indicador não estará duplicado no gráfico, já nos garante uma certa tranquilidade.

Ciência de Dados e Aprendizado de Máquina (Parte 03): Regressões Matriciais
Desta vez nossos modelos estão sendo feitos por matrizes, o que permite flexibilidade ao mesmo tempo que nos permite fazer modelos poderosos que podem manipular não apenas cinco variáveis independentes, mas também muitas variáveis, desde que permaneçamos dentro dos limites de cálculos de um computador, este artigo será uma leitura interessante, isso é certo.

DoEasy. Controles (Parte 29): Controle auxiliar "ScrollBar"
Neste artigo, iniciaremos o desenvolvimento do elemento de controle auxiliar ScrollBar e seus objetos derivados, incluindo as barras de rolagem vertical e horizontal. A ScrollBar (barra de rolagem) é utilizada para rolar o conteúdo da forma caso ele ultrapasse o contêiner. As barras de rolagem geralmente são posicionadas na parte inferior e à direita da forma. A barra de rolagem horizontal, localizada na parte inferior, permite rolar o conteúdo para a esquerda e direita, enquanto a barra de rolagem vertical possibilita rolar o conteúdo para cima e para baixo.

Criação de um Expert Advisor simples em várias moedas usando MQL5 (Parte 4): Média móvel triangular — Sinais do indicador
Neste artigo, por EA multimoeda, entendemos um robô investidor, ou um robô de negociação, que pode negociar (abrir/fechar ordens, gerenciar ordens, por exemplo, do tipo trailing stop-loss e trailing profit) mais de um par de moedas em um gráfico. Desta vez, usaremos apenas um indicador, em particular a média móvel triangular em um ou mais timeframes, ou escalas de tempo.

Desenvolvendo um fator de qualidade para os EAs
Nesse artigo vamos explicar como desenvolver um fator de qualidade para ser retornado pelo seu EA no testador de estratégia. Iremos mostrar duas formas de cálculo conhecidas (Van Tharp e Sunny Harris).

Aprenda algumas lições com as Empresas de Prop Trading (Parte 1) — Uma introdução
Neste artigo introdutório, discutirei algumas lições que podem ser aprendidas com os testes que as empresas de prop trading empregam. Isso é especialmente relevante para iniciantes e para aqueles que estão lutando para encontrar seu lugar no mundo do trading. O próximo artigo abordará a implementação do código.

Um exemplo de como montar modelos ONNX em MQL5
O ONNX (Open Neural Network Exchange) é um padrão aberto para a representação de modelos de redes neurais. Neste artigo, mostraremos a possibilidade de usar dois modelos ONNX simultaneamente em um Expert Advisor.

Gestão de dinheiro de negociação
Neste artigo, veremos várias novas maneiras de criar sistemas de gerenciamento de dinheiro e identificar seus principais recursos. Hoje, existem algumas estratégias de gerenciamento de dinheiro para todos os gostos. Tentaremos considerar várias maneiras de administrar o dinheiro com base em diferentes modelos matemáticos de crescimento.

Métodos de William Gann (Parte I): Criando um indicador de ângulos de Gann
Qual é a essência da teoria de Gann? Como são construídos os ângulos de Gann? Criamos um indicador de ângulos de Gann para o MetaTrader 5.