Algoritmo do Campo Elétrico Artificial — Artificial Electric Field Algorithm (AEFA)
Este artigo apresenta o Algoritmo do Campo Elétrico Artificial (AEFA), inspirado na lei de Coulomb da força eletrostática. Por meio de partículas carregadas e suas interações, o algoritmo simula fenômenos elétricos para resolver tarefas complexas de otimização. O AEFA demonstra propriedades únicas em relação a outros algoritmos baseados em leis da natureza.
Desenvolvendo um EA multimoeda (Parte 25): Conectando uma nova estratégia (II)
Neste artigo, continuaremos a conectar uma nova estratégia ao sistema de otimização automática já criado. Vamos ver quais mudanças devem ser feitas no EA responsável pela criação do projeto de otimização e nos EAs das segunda e terceira etapas.
Redes neurais em trading: Previsão de séries temporais com o auxílio da decomposição modal adaptativa (ACEFormer)
Propomos conhecer a arquitetura ACEFormer, uma solução moderna que combina a eficiência da atenção probabilística com a decomposição adaptativa de séries temporais. O material será útil para quem busca um equilíbrio entre desempenho computacional e precisão de previsão nos mercados financeiros.
Exemplo de Análise de Rede de Causalidade (CNA) e Modelo de Autorregressão Vetorial para Predição de Eventos de Mercado
Este artigo apresenta um guia abrangente para implementar um sistema de negociação sofisticado utilizando Análise de Rede de Causalidade (CNA) e Autorregressão Vetorial (VAR) em MQL5. Ele aborda o embasamento teórico desses métodos, fornece explicações detalhadas das funções-chave no algoritmo de negociação e inclui exemplos de código para implementação.
Expert Advisor Auto-Otimizável com MQL5 e Python (Parte VI): Aproveitando o Deep Double Descent
O aprendizado de máquina tradicional ensina os praticantes a serem vigilantes para não superajustar (overfitting) seus modelos. No entanto, essa ideologia está sendo desafiada por novas descobertas publicadas por pesquisadores diligentes de Harvard, que identificaram que o que parece ser overfitting pode, em certas circunstâncias, ser resultado de encerrar prematuramente os procedimentos de treinamento. Demonstramos como podemos usar as ideias publicadas no artigo de pesquisa para melhorar nosso uso de IA na previsão de retornos de mercado.
Algoritmo de otimização baseado em ecossistema artificial — Artificial Ecosystem-based Optimization (AEO)
O artigo aborda o algoritmo metaheurístico AEO, que modela as interações entre os componentes de um ecossistema, criando uma população inicial de soluções e aplicando estratégias adaptativas de atualização, e descreve detalhadamente as etapas do funcionamento do AEO, incluindo as fases de consumo e decomposição, bem como as diferentes estratégias de comportamento dos agentes. O artigo apresenta as características e vantagens do AEO.
Ondas triangulares e em forma de serra: ferramentas para o trader
Um dos métodos de análise técnica é a análise de ondas. Neste artigo, vamos examinar ondas de um tipo um pouco incomum, nomeadamente as triangulares e as em forma de serra. Com base nessas ondas, é possível construir vários indicadores técnicos que permitem analisar o movimento do preço no mercado.
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (HiSSD)
Apresentamos o framework HiSSD, que combina aprendizado hierárquico e abordagens multiagente para a criação de sistemas adaptativos. Neste trabalho, exploramos em detalhe como essa abordagem inovadora ajuda a identificar padrões ocultos nos mercados financeiros e a otimizar estratégias de trading em condições de descentralização.
Simulação de mercado: Position View (V)
Apesar do que foi visto no artigo anterior, se algo aparentemente simples. Ali, temos diversos problemas e muitas coisas a serem resolvidas e feita. Você caro leitor, pode imaginar que tudo é fácil e simples. E de maneira inocente, vai simplesmente aceitando o que lhe é apresentado. Isto é uma falha, na qual você, caro leitor, deverá tentar se livrar. Mas pior do que aceitar, é simplesmente, não entender e tentar usar algo sem de fato compreender o que está sendo usado. Não é raro, entre iniciantes, a fase de cópia e cola. Porém, caso você não queira ficar sempre nesta, é bom aprender como usar certas ferramentas. E uma das ferramentas mais utilizadas por programadores é a documentação. E a segunda ferramenta é os testes e arquivos de log. Aqui veremos como fazer isto.
Redes neurais em trading: Modelo universal de geração de trajetórias (UniTraj)
Compreender o comportamento de agentes é importante em diversas áreas, mas a maioria dos métodos se concentra em uma única tarefa (compreensão, remoção de ruído ou previsão), o que reduz sua eficácia em cenários reais. Neste artigo, apresento um modelo capaz de se adaptar à solução de diferentes tarefas.
Redes neurais em trading: Detecção de objetos com reconhecimento de cena (HyperDet3D)
Apresentamos uma nova abordagem para a detecção de objetos por meio de hiper-redes. Uma hiper-rede de geração de pesos para o modelo subjacente, que nos permite levar em conta as peculiaridades do estado atual do mercado. Essa abordagem melhora a precisão da previsão, adaptando o modelo a diferentes condições de mercado.
Busca dialética — Dialectic Search (DA)
Apresentamos o Algoritmo Dialético (DA), um novo método de otimização global inspirado no conceito filosófico de dialética. O algoritmo utiliza uma divisão única da população em pensadores especulativos e práticos. Os testes mostram um desempenho impressionante de até 98% em tarefas de baixa dimensionalidade e uma eficácia geral de 57,95%. Este artigo explica esses números e apresenta uma descrição detalhada do algoritmo e os resultados dos experimentos em diferentes tipos de funções.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 48): Alligator de Bill Williams
O Indicador Alligator, que foi idealizado por Bill Williams, é um indicador versátil de identificação de tendências que fornece sinais claros e é frequentemente combinado com outros indicadores. As classes e a montagem do wizard MQL5 nos permitem testar uma variedade de sinais com base em padrões e, portanto, consideramos também este indicador.
Redes neurais em trading: Agente com memória em camadas
As abordagens de memória em camadas, que imitam os processos cognitivos humanos, permitem processar dados financeiros complexos e se adaptar a novos sinais, o que contribui para decisões de investimento mais eficazes em mercados dinâmicos.
Redes neurais no trading: Dupla clusterização de séries temporais (DUET)
O framework DUET propõe uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para identificar padrões ocultos nos dados analisados. Isso permite adaptar os modelos às mudanças ao longo do tempo e aumentar a precisão das previsões por meio da eliminação de ruídos.
Simulação de mercado: Iniciando o SQL no MQL5 (II)
Apesar de muitos imaginarem que podemos usar tranquilamente códigos em SQL dentro de outros códigos. Isto normalmente não se aplica. Devido ao fato, de que um código SQL, será sempre colocado dentro de um executável, como sendo uma string. E este fato de colocar o código SQL como sendo uma string, apesar de não ser problemático, para pequenos trechos de código. Podem sim ser algo que nos causará muitos transtornos e uma baita de uma dor de cabeça.
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 9): Expert Advisor de Múltiplas Estratégias (I)
Hoje, vamos explorar as possibilidades de incorporar múltiplas estratégias em um Expert Advisor (EA) usando MQL5. Os Expert Advisors oferecem capacidades mais amplas do que apenas indicadores e scripts, permitindo abordagens de negociação mais sofisticadas que podem se adaptar às mudanças das condições do mercado. Confira mais na discussão deste artigo.
Redes neurais em trading: Sistema multiagente com confirmação conceitual (Conclusão)
Continuamos a implementação das abordagens propostas pelos autores do framework FinCon. O FinCon é um sistema multiagente baseado em grandes modelos de linguagem (LLM). Hoje vamos implementar os módulos necessários e realizar testes abrangentes do modelo com dados históricos reais.
Simulação de mercado (Parte 24): Iniciando o SQL (VII)
No artigo anterior terminamos de fazer as devidas apresentações sobre o SQL. Então o que eu havia me proposto a mostrar e explicar, sobre SQL, ao meu ver, foi devidamente explicado. Isto para que todos, que vierem a ver o sistema de replay / simulador, sendo construído. Consigam no mínimo terem alguma noção do que pode estar se passando ali. Devido ao fato, de que não faz sentido, programar diversas coisas, que podem ser perfeitamente cobertas pelo SQL.
Simulação de mercado: Position View (IV)
Aqui começaremos a unir diversas coisas, ou aplicações que antes estavam complemente isoladas entre si. Apesar de que o Chart Trade, o Indicador de Mouse e o Expert Advisor, já terem algum tipo de relacionamento. Não havia ainda uma forma de podermos observar, posições que estivessem abertas no servidor de negociação, isto diretamente no gráfico. Fazendo muitas das vezes uso de um sistema cross order. Mas a partir deste momento isto começa a se tornar possível. Abrindo diversas portas para novas ideias e implementações futuras. Se bem que estamos apenas começando a fazer as coisas acontecerem. Mas já teremos uma direção na qual seguir.
Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática
Neste artigo, continuaremos a explorar a implementação do algoritmo ACMO (Atmospheric Cloud Model Optimization). Em particular, discutiremos dois aspectos-chave: o movimento das nuvens para regiões de baixa pressão e a modelagem do processo de chuva, incluindo a inicialização das gotas e sua distribuição entre as nuvens. Analisaremos também outros métodos importantes para a gestão do estado das nuvens e para garantir sua interação com o ambiente.
Dominando Registros de Log (Parte 1): Conceitos Fundamentais e Primeiros Passos em MQL5
Bem-vindo ao início de mais uma jornada! Este artigo abre uma série especial onde criaremos, passo a passo, uma biblioteca para manipulação de logs, feita sob medida para quem desenvolve na linguagem MQL5.
Redes neurais em trading: Modelos com uso de transformação wavelet e atenção multitarefa
Apresentamos um framework que combina a transformação wavelet com um modelo multitarefa de Self-Attention, visando aumentar a responsividade e a precisão das previsões em cenários de mercado voláteis. A transformação wavelet permite decompor o retorno dos ativos em frequências altas e baixas, capturando com precisão as tendências de longo prazo do mercado e as flutuações de curto prazo.
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Conclusão)
Damos continuidade ao estudo do framework inovador Chimera, um modelo bidimensional do espaço de estados que utiliza tecnologias de redes neurais para análise de séries temporais multidimensionais. Esse método garante alta precisão de previsão com baixo custo computacional.
Implementação do mecanismo de breakeven em MQL5 (Parte 1): Classe base e modo de breakeven por pontos fixos
Neste artigo, analisamos a aplicação do mecanismo de breakeven (ponto de equilíbrio) em estratégias automatizadas na linguagem MQL5. Começaremos com uma explicação simples do que é o modo de breakeven, como ele é implementado e quais são suas possíveis variações. Em seguida, essa funcionalidade será integrada ao EA Order Blocks, criado por nós no último artigo sobre gerenciamento de riscos. Para avaliar a eficácia, faremos dois backtests sob determinadas condições: um com a aplicação do mecanismo de breakeven e outro, sem.
Algoritmo de Otimização de Bilhar — Billiards Optimization Algorithm (BOA)
Inspirado no jogo clássico de bilhar, o método BOA modela o processo de busca por soluções ótimas como uma partida em que as bolas tentam cair nas caçapas, que simbolizam os melhores resultados. Neste artigo, analisaremos os fundamentos do funcionamento do BOA, seu modelo matemático e sua eficácia na resolução de diferentes problemas de otimização.
Redes neurais em trading: Redução de consumo de memória com o método de otimização Adam-mini
Uma das abordagens para aumentar a eficiência no treinamento e na convergência de modelos é aprimorar os métodos de otimização. O Adam-mini é um método adaptativo projetado para aprimorar o algoritmo base Adam.
Definição de sobrecompra e sobrevenda segundo a teoria do caos
Determinamos as zonas de sobrecompra e sobrevenda do mercado a partir da teoria do caos: uma integração dos princípios da teoria do caos, da geometria fractal e das redes neurais para prever os mercados financeiros. O estudo demonstra o uso do expoente de Lyapunov como medida da natureza caótica do mercado e a adaptação dinâmica dos sinais de trade. A metodologia inclui um algoritmo de geração de ruído fractal, ativação tangencial hiperbólica e otimização com momento.
Simulação de mercado: Position View (XIII)
Neste artigo, mostrarei como você, pode sem muito esforço, conseguir implementar a indicação se uma posição, está lhe dando prejuízo ou mesmo lucro. Isto de maneira extremamente simples e eficaz. Usando este indicador que estou mostrando como desenvolver, você, mesmo sem muito conhecimento, conseguirá facilmente saber quando é hora de fechar uma posição. E ao fazê-lo, não virá a ter um resultado diferente do esperado. Isto por que, estamos efetuando o calculo de forma a termos a real situação de nossa posição.
Redes neurais em trading: Modelos de difusão direcionada (DDM)
Apresentamos os modelos de difusão direcionada, que utilizam ruídos anisotrópicos e direcionais, dependentes dos dados, no processo de propagação para frente, para capturar representações de grafos significativas.
Do básico ao intermediário: Filas, Listas e Árvores (I)
Neste artigo começaremos a explorar uma pequena série de conceitos, que é de suma importância para quem realmente deseja aprender a programar da maneira correta. Com se trata de algo que a principio pode ser muito complicado. Apesar de usar coisas simples. Iremos ver isto aos poucos. Então aqui iremos começar a ver o que seria filas de dados.
MQL5 Trading Toolkit (Parte 5): Expansão da biblioteca EX5 para gerenciamento do histórico com funções do último ordem pendente executada
Aprenda a criar um módulo EX5 com funções exportáveis que permite consultar e armazenar facilmente os dados da última ordem pendente executada. Neste guia passo a passo, aprimoraremos a biblioteca EX5 de gerenciamento de histórico (History Management) desenvolvendo funções especializadas e independentes para extrair as principais propriedades da última ordem pendente executada. Entre essas propriedades estão o tipo de ordem, o horário de colocação, o horário de execução, o tipo de execução e outros dados importantes necessários para o gerenciamento e análise eficaz do histórico de operações com ordens pendentes.
Otimização por herança sanguínea — Blood Inheritance Optimization (BIO)
Apresento a vocês meu novo algoritmo populacional de otimização BIO (Blood Inheritance Optimization), inspirado no sistema de herança dos tipos sanguíneos humanos. Neste algoritmo, cada solução possui seu próprio "tipo sanguíneo", que define a forma de sua evolução. Assim como na natureza, o tipo sanguíneo de uma criança é herdado segundo regras específicas, no BIO as novas soluções recebem suas características através de um sistema de herança e mutações.
Otimização de nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoria
Este artigo é dedicado ao algoritmo meta-heurístico Atmosphere Clouds Model Optimization (ACMO), que modela o comportamento das nuvens para resolver problemas de otimização. O algoritmo utiliza os princípios de geração, movimento e dispersão de nuvens, adaptando-se às "condições climáticas" no espaço de soluções. O artigo explora como a simulação meteorológica do algoritmo encontra soluções ótimas em um espaço complexo de possibilidades e descreve detalhadamente as etapas do ACMO, incluindo a preparação do "céu", o nascimento das nuvens, seu deslocamento e a concentração de chuva.
Otimização com Jogo do Caos — Chaos Game Optimization (CGO)
Apresentamos o novo algoritmo meta-heurístico Chaos Game Optimization (CGO), que demonstra capacidade única de manter alta eficiência em tarefas de grande dimensionalidade. Ao contrário da maioria dos algoritmos de otimização, o CGO não apenas não perde desempenho, como também às vezes melhora sua performance quando a complexidade do problema aumenta, o que constitui sua principal característica.
Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)
Continuamos a desenvolver o modelo transformador hierárquico com duas torres, o Hidformer, projetado para análise e previsão de séries temporais multivariadas complexas. Neste artigo, levaremos o trabalho iniciado anteriormente até sua conclusão lógica, com testes do modelo em dados históricos reais.
Algoritmo do Restaurateur de Sucesso — Successful Restaurateur Algorithm (SRA)
O Algoritmo do Restaurateur de Sucesso (SRA) é um método inovador de otimização inspirado nos princípios de gestão de um restaurante. Ao contrário das abordagens tradicionais, o SRA não descarta as soluções mais fracas, mas as melhora, combinando-as com elementos das soluções de maior sucesso. O algoritmo apresenta resultados competitivos e traz uma nova perspectiva sobre como equilibrar a diversificação e a intensificação em problemas de otimização.
Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, Box-Muller
Este artigo apresenta uma imersão fascinante no mundo do comportamento social de organismos vivos e sua influência na criação de um novo modelo matemático — ASBO (Adaptive Social Behavior Optimization). Exploramos como os princípios de liderança, vizinhança e cooperação, observados em sociedades de seres vivos, inspiram o desenvolvimento de algoritmos de otimização inovadores.
Redes neurais em trading: Segmentação guiada
Vamos conhecer um método de análise multimodal integrada para interagir e compreender características.
Introdução ao MQL5 (Parte 10): Um Guia para Iniciantes sobre como Trabalhar com Indicadores Embutidos no MQL5
Este artigo introduz o trabalho com indicadores embutidos no MQL5, com foco na criação de um Expert Advisor (EA) baseado em RSI usando uma abordagem orientada a projeto. Você aprenderá a recuperar e utilizar valores de RSI, lidar com varreduras de liquidez e aprimorar a visualização de trades usando objetos no gráfico. Além disso, o artigo enfatiza a gestão eficaz de risco, incluindo a definição de risco baseado em porcentagem, implementação de relações risco-retorno e aplicação de modificações de risco para garantir lucros.