Gerenciamento de riscos (Parte 2): Implementação do cálculo de lotes na interface gráfica
Neste artigo, analisaremos como aprimorar e aplicar de forma mais eficiente os conceitos apresentados no artigo anterior, utilizando as poderosas bibliotecas de elementos gráficos de controle do MQL5. Conduzirei você passo a passo pelo processo de criação de uma interface gráfica totalmente funcional, explicando o plano de projeto subjacente, bem como o propósito e o princípio de funcionamento de cada método empregado. Além disso, ao final do artigo testaremos o painel criado, a fim de confirmar seu correto funcionamento e sua aderência aos objetivos estabelecidos.
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Conclusão)
Damos continuidade ao estudo do framework inovador Chimera, um modelo bidimensional do espaço de estados que utiliza tecnologias de redes neurais para análise de séries temporais multidimensionais. Esse método garante alta precisão de previsão com baixo custo computacional.
Simulação de mercado: Position View (X)
Precisamos de fato, de algum meio para conseguir lidar com os objetos gráficos que serão criados. A proposta mostrada no artigo anterior, se encaixa perfeitamente bem, em alguns cenários. No entanto, aqui, precisamos de algo um pouco mais elaborado. Isto devido a natureza do problema com que estamos lidando. Assim sendo, não tentaremos de maneira alguma substituir os mecanismos que estão presentes no MetaTrader 5. Isto para conseguir lidar com o ZOrder, além é claro, verificar qual objeto está em primeiro plano ou encoberto por outro objeto. Vamos fazer algo completamente diferente. Aqui vou mostrar quais as modificações que precisam ser feitas no código a fim de conseguir, tirar de alguma forma, proveito do que o MetaTrader 5, já faz para nos.
Otimização de nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoria
Este artigo é dedicado ao algoritmo meta-heurístico Atmosphere Clouds Model Optimization (ACMO), que modela o comportamento das nuvens para resolver problemas de otimização. O algoritmo utiliza os princípios de geração, movimento e dispersão de nuvens, adaptando-se às "condições climáticas" no espaço de soluções. O artigo explora como a simulação meteorológica do algoritmo encontra soluções ótimas em um espaço complexo de possibilidades e descreve detalhadamente as etapas do ACMO, incluindo a preparação do "céu", o nascimento das nuvens, seu deslocamento e a concentração de chuva.
Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)
Continuamos a desenvolver o modelo transformador hierárquico com duas torres, o Hidformer, projetado para análise e previsão de séries temporais multivariadas complexas. Neste artigo, levaremos o trabalho iniciado anteriormente até sua conclusão lógica, com testes do modelo em dados históricos reais.
Simulação de mercado (Parte 24): Iniciando o SQL (VII)
No artigo anterior terminamos de fazer as devidas apresentações sobre o SQL. Então o que eu havia me proposto a mostrar e explicar, sobre SQL, ao meu ver, foi devidamente explicado. Isto para que todos, que vierem a ver o sistema de replay / simulador, sendo construído. Consigam no mínimo terem alguma noção do que pode estar se passando ali. Devido ao fato, de que não faz sentido, programar diversas coisas, que podem ser perfeitamente cobertas pelo SQL.
Redes neurais em trading: Segmentação de dados com base em expressões de referência
Ao analisarmos a situação de mercado, a dividimos em segmentos individuais, identificando as principais tendências. No entanto, os métodos tradicionais de análise geralmente se concentram em um único aspecto, limitando a percepção. Neste artigo, apresentaremos um método que permite destacar vários objetos, oferecendo uma compreensão mais completa e em camadas da situação.
Redes neurais em trading: Aprendizado dependente de contexto com memória (Conclusão)
Estamos finalizando a implementação do framework MacroHFT para trading de alta frequência com criptomoedas, que utiliza aprendizado por reforço dependente de contexto e memória para se adaptar às condições dinâmicas do mercado. E para concluir este artigo, será realizado um teste com os métodos implementados utilizando dados históricos reais, a fim de avaliar sua eficácia.
Algoritmo do Restaurateur de Sucesso — Successful Restaurateur Algorithm (SRA)
O Algoritmo do Restaurateur de Sucesso (SRA) é um método inovador de otimização inspirado nos princípios de gestão de um restaurante. Ao contrário das abordagens tradicionais, o SRA não descarta as soluções mais fracas, mas as melhora, combinando-as com elementos das soluções de maior sucesso. O algoritmo apresenta resultados competitivos e traz uma nova perspectiva sobre como equilibrar a diversificação e a intensificação em problemas de otimização.
Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, Box-Muller
Este artigo apresenta uma imersão fascinante no mundo do comportamento social de organismos vivos e sua influência na criação de um novo modelo matemático — ASBO (Adaptive Social Behavior Optimization). Exploramos como os princípios de liderança, vizinhança e cooperação, observados em sociedades de seres vivos, inspiram o desenvolvimento de algoritmos de otimização inovadores.
Do básico ao intermediário: Eventos em Objetos (IV)
Neste artigo iremos terminar o que foi começado no artigo anterior. Ou seja, uma forma total e completamente interativa de redimensionar os objetos diretamente no gráfico. Apesar do fato de muitos imaginarem que para fazer tal coisa, seria necessário muito mais conhecimento sobre MQL5. Você irá notar que usando conceitos simples e um conhecimento muito básico, podemos implementar uma forma de trabalhar com os objetos diretamente no gráfico. Algo que terá um resultado bem divertido e bastante interessante.
MQL5 Trading Toolkit (Parte 5): Expansão da biblioteca EX5 para gerenciamento do histórico com funções do último ordem pendente executada
Aprenda a criar um módulo EX5 com funções exportáveis que permite consultar e armazenar facilmente os dados da última ordem pendente executada. Neste guia passo a passo, aprimoraremos a biblioteca EX5 de gerenciamento de histórico (History Management) desenvolvendo funções especializadas e independentes para extrair as principais propriedades da última ordem pendente executada. Entre essas propriedades estão o tipo de ordem, o horário de colocação, o horário de execução, o tipo de execução e outros dados importantes necessários para o gerenciamento e análise eficaz do histórico de operações com ordens pendentes.
Analisando o código binário dos preços no mercado (Parte II): Convertendo para BIP39 e criando um modelo GPT
Seguimos com as tentativas de decifrar os movimentos dos preços... Que tal uma análise linguística do "vocabulário do mercado", que obtemos ao converter o código binário do preço para BIP39? Neste artigo, vamos nos aprofundar em uma abordagem inovadora para a análise de dados de mercado e explorar como os métodos modernos de processamento de linguagem natural podem ser aplicados ao idioma do mercado.
Algoritmo de Otimização de Bilhar — Billiards Optimization Algorithm (BOA)
Inspirado no jogo clássico de bilhar, o método BOA modela o processo de busca por soluções ótimas como uma partida em que as bolas tentam cair nas caçapas, que simbolizam os melhores resultados. Neste artigo, analisaremos os fundamentos do funcionamento do BOA, seu modelo matemático e sua eficácia na resolução de diferentes problemas de otimização.
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (HiSSD)
Apresentamos o framework HiSSD, que combina aprendizado hierárquico e abordagens multiagente para a criação de sistemas adaptativos. Neste trabalho, exploramos em detalhe como essa abordagem inovadora ajuda a identificar padrões ocultos nos mercados financeiros e a otimizar estratégias de trading em condições de descentralização.
Redes neurais em trading: Modelos de espaço de estados
A base de muitos dos modelos que examinamos anteriormente é a arquitetura Transformer. No entanto, eles podem ser ineficientes ao lidar com sequências longas. Neste artigo, proponho uma abordagem alternativa de previsão de séries temporais com base em modelos de espaço de estados.
Criando um Expert Advisor Integrado MQL5-Telegram (Parte 7): Análise de Comandos para Automação de Indicadores em Gráficos
Neste artigo, exploramos como integrar comandos do Telegram com MQL5 para automatizar a adição de indicadores em gráficos de negociação. Cobrimos o processo de análise (parsing) dos comandos dos usuários, sua execução no MQL5 e o teste do sistema para garantir uma negociação baseada em indicadores de forma fluida.
Criação de um painel de administração de trading no MQL5 (Parte IV): Segurança no login
Imagine que um invasor tenha conseguido entrar no sistema de gerenciamento de trading e obtido acesso aos computadores e ao painel de administração usados para transmitir informações valiosas a milhões de traders em todo o mundo. Isso pode resultar em consequências catastróficas, como o envio não autorizado de mensagens enganosas ou cliques acidentais em botões que disparam ações indesejadas. Neste artigo, analisaremos as medidas de segurança do MQL5 e os novos recursos de proteção implementados em nosso painel de administração para evitar tais ameaças. Ao aprimorar nossos protocolos de segurança, buscamos proteger nossos canais de comunicação e manter a confiança dos membros de nossa comunidade de trading.
Do básico ao intermediário: FileSave e FileLoad
Neste artigo será explicado e explorado algumas formas de lidar com as funções de biblioteca FileSave e FileLoad. Apesar de muita gente, as considerar pouco promissoras, devido a algumas limitações ou dificuldades que as mesmas nos gera em alguns tipos de cenários. Entender da forma correta como estas duas funções trabalham, podem lhe poupar muito trabalho em certos momento. Além é claro, das mesmas, serem uma ótima forma de promover arquivos de log.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 45): Aprendizado por Reforço com Monte-Carlo
Monte-Carlo é o quarto algoritmo diferente em aprendizado por reforço que estamos considerando com o objetivo de explorar sua implementação em Expert Advisors montados pelo wizard. Embora ancorado em amostragem aleatória, ele apresenta vastas formas de simulação que podemos explorar.
Do básico ao intermediário: Classes (I)
Neste artigo, começaremos a ver o que seria de fato uma classe, e por que elas foram criadas. Apesar deste ser um assunto bastante interessante, aqui iremos focar, nas questões relacionadas ao que rege e tange a programação em MQL5. Sendo este artigo, apenas uma introdução ao assunto.
Desenvolvendo um EA multimoeda (Parte 23): Colocando em ordem o pipeline de etapas da otimização automática de projetos (II)
Estamos buscando criar um sistema de otimização periódica e automática das estratégias de trading utilizadas em um único EA final. À medida que o sistema evolui, ele se torna mais complexo, sendo necessário, periodicamente, analisá-lo como um todo para identificar gargalos e soluções pouco eficientes.
Redes neurais em trading: Integração da teoria do caos na previsão de séries temporais (Attraos)
O Attraos é um framework que integra a teoria do caos à previsão de séries temporais de longo prazo, tratando-as como projeções de sistemas dinâmicos caóticos multidimensionais. Por meio da invariância do atrator, o modelo aplica a reconstrução do espaço de fases e a memória dinâmica com múltiplas resoluções para preservar estruturas históricas.
Visualização de estratégias em MQL5: distribuindo os resultados da otimização em gráficos de critérios
Neste artigo, escreveremos um exemplo de visualização do processo de otimização e exibiremos os três melhores passes para quatro critérios de otimização. Além disso, implementaremos a possibilidade de selecionar um dos três melhores passes para exibir seus dados em tabelas e no gráfico.
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (Conclusão)
O artigo analisa a implementação prática do framework HiSSD em tarefas de trading algorítmico. É mostrado como a hierarquia de habilidades e a arquitetura adaptativa podem ser utilizadas para desenvolver estratégias de negociação robustas.
Análise da influência do clima nas moedas de países agrícolas usando Python
Como o clima está relacionado ao mercado cambial? Na teoria econômica clássica, por muito tempo não se reconheceu a influência de fatores como o clima no comportamento do mercado. Porém, tudo mudou. Vamos tentar estabelecer conexões entre o estado do tempo e a situação das moedas agrícolas no mercado.
Do básico ao intermediário: Eventos em Objetos (III)
Neste artigo iremos preparar o terreno para algo que será visto no próximo artigo. Mas também iremos ver como permitir que um objeto do tipo OBJ_LABEL possa ser editado e movido de forma completamente interativa. Ou seja, poderemos mudar tanto o texto quanto a posição de um objeto do tipo OBJ_LABEL, sem abrir a janela de propriedades do objeto.
Do básico ao intermediário: Filas, Listas e Árvores (VI)
Neste artigo iremos retomar a implementação do que seria uma árvore. Agora que temos os conceitos básicos sobre como um constructor e destructor funcionam. Poderemos finalmente corrigir o código visto no último artigo. Mas se prepare para uma verdadeira aventura dentro da programação MQL5.
Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática
Neste artigo, continuaremos a explorar a implementação do algoritmo ACMO (Atmospheric Cloud Model Optimization). Em particular, discutiremos dois aspectos-chave: o movimento das nuvens para regiões de baixa pressão e a modelagem do processo de chuva, incluindo a inicialização das gotas e sua distribuição entre as nuvens. Analisaremos também outros métodos importantes para a gestão do estado das nuvens e para garantir sua interação com o ambiente.
Consultor Especialista Auto-Otimizável com MQL5 e Python (Parte V): Modelos de Markov Profundos
Nesta discussão, aplicaremos uma Cadeia de Markov simples sobre um indicador RSI, para observar como o preço se comporta após o indicador atravessar níveis-chave. Concluímos que os sinais de compra e venda mais fortes no par NZDJPY são gerados quando o RSI está nas faixas de 11-20 e 71-80, respectivamente. Vamos demonstrar como você pode manipular seus dados para criar estratégias de trading ideais aprendidas diretamente a partir dos dados que possui. Além disso, mostraremos como treinar uma rede neural profunda para aprender a utilizar a matriz de transição de forma otimizada.
Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)
Apresentamos o framework do transformador hierárquico de duas torres (Hidformer), desenvolvido para previsão de séries temporais e análise de dados. Os autores do framework propuseram diversas melhorias na arquitetura Transformer, o que permitiu aumentar a precisão das previsões e reduzir o consumo de recursos computacionais.
Ondas triangulares e em forma de serra: ferramentas para o trader
Um dos métodos de análise técnica é a análise de ondas. Neste artigo, vamos examinar ondas de um tipo um pouco incomum, nomeadamente as triangulares e as em forma de serra. Com base nessas ondas, é possível construir vários indicadores técnicos que permitem analisar o movimento do preço no mercado.
Aplicação da Teoria dos Jogos de Nash com Filtragem HMM em Trading
Este artigo explora a aplicação da teoria dos jogos de John Nash, especificamente o Equilíbrio de Nash, no mercado financeiro. Ele discute como os traders podem utilizar scripts em Python e MetaTrader 5 para identificar e explorar ineficiências do mercado utilizando os princípios de Nash. O artigo oferece um guia passo a passo sobre como implementar essas estratégias, incluindo o uso de Modelos Ocultos de Markov (HMM) e análise estatística para melhorar o desempenho das negociações.
Técnicas do Assistente MQL5 que você deve conhecer (Parte 46): Ichimoku
O Ichimuko Kinko Hyo é um renomado indicador japonês que serve como um sistema de identificação de tendência. Examinamos isso, padrão por padrão, como foi o caso em artigos semelhantes anteriores, e também avaliamos suas estratégias e relatórios de teste com a ajuda das classes e montagem da biblioteca wizard do MQL5.
Redes neurais em trading: Modelo hiperbólico de difusão latente (Conclusão)
A aplicação de processos de difusão anisotrópicos para codificação dos dados brutos no espaço latente hiperbólico, conforme proposto no framework HypDiff, contribui para a preservação das características topológicas da situação atual do mercado e melhora a qualidade de sua análise. No artigo anterior, iniciamos a implementação das abordagens propostas usando MQL5. Hoje, continuaremos esse trabalho iniciado, levando-o até sua conclusão lógica.
Introdução ao MQL5 (Parte 10): Um Guia para Iniciantes sobre como Trabalhar com Indicadores Embutidos no MQL5
Este artigo introduz o trabalho com indicadores embutidos no MQL5, com foco na criação de um Expert Advisor (EA) baseado em RSI usando uma abordagem orientada a projeto. Você aprenderá a recuperar e utilizar valores de RSI, lidar com varreduras de liquidez e aprimorar a visualização de trades usando objetos no gráfico. Além disso, o artigo enfatiza a gestão eficaz de risco, incluindo a definição de risco baseado em porcentagem, implementação de relações risco-retorno e aplicação de modificações de risco para garantir lucros.
Algoritmo de Partenogênese Cíclica — Cyclic Parthenogenesis Algorithm (CPA)
Neste artigo, vamos analisar um novo algoritmo populacional de otimização, o CPA (Cyclic Parthenogenesis Algorithm), inspirado na estratégia reprodutiva única dos pulgões. O algoritmo combina dois mecanismos de reprodução — partenogênese e sexual — e utiliza uma estrutura de colônia populacional com possibilidade de migração entre colônias. As principais características do algoritmo são a alternância adaptativa entre diferentes estratégias reprodutivas e o sistema de troca de informação entre colônias por meio do mecanismo de voo.
Otimização com Jogo do Caos — Chaos Game Optimization (CGO)
Apresentamos o novo algoritmo meta-heurístico Chaos Game Optimization (CGO), que demonstra capacidade única de manter alta eficiência em tarefas de grande dimensionalidade. Ao contrário da maioria dos algoritmos de otimização, o CGO não apenas não perde desempenho, como também às vezes melhora sua performance quando a complexidade do problema aumenta, o que constitui sua principal característica.
Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit
Tentou-se criar um EA para prever cotações de taxas de câmbio. Como base para o algoritmo, foram adotados modelos clássicos de classificação, como regressão logística e probit. O critério de razão de verossimilhança é utilizado para filtrar os sinais de negociação.
Simulação de mercado: Position View (VI)
Neste artigo, faremos diversas melhorias, visando obter com que o indicador de posição, venha a refletir o que de fato está ocorrendo no servidor de negociação em termos de posições e seu status atual. Devo lembrar, que estas aplicações que serão mostradas aqui, não visam de maneira alguma substituir qualquer elemento presente no MetaTrader 5. E tal pouco devem ser utilizadas sem os devidos cuidados e critérios. Já que elas tem como objetivo terem um código didático. Ou seja, para fins de aprendizado de como as coisas funcionam. E o motivo para que eu diga que o código é didático. É pelo fato de que o uso de mensagens em alguns casos não é a melhor forma de implementar as coisas.