DoEasy. Funções de Serviço (Parte 3): Padrão "Barra Externa"
Neste artigo, desenvolveremos o padrão Price Action "Barra Externa" na biblioteca DoEasy e otimizaremos os métodos de acesso ao gerenciamento de padrões de preço. Além disso, realizaremos correções de erros e melhorias identificadas durante os testes da biblioteca.
Criação de um painel de administração de trading em MQL5 (Parte V): Autenticação de dois fatores (2FA)
Este artigo aborda o aumento da segurança do painel de administração de trading, atualmente em desenvolvimento. Vamos explorar como integrar o MQL5 a uma nova estratégia de segurança, utilizando a API do Telegram para autenticação de dois fatores (2FA). O artigo traz informações valiosas sobre a aplicação de MQL5 para reforçar medidas de segurança. Além disso, veremos a função MathRand, focando em sua funcionalidade e na forma como pode ser usada de forma eficiente em nosso sistema de segurança.
Negociando com o Calendário Econômico MQL5 (Parte 4): Implementando Atualizações de Notícias em Tempo Real no Painel
Este artigo aprimora nosso painel do Calendário Econômico implementando atualizações de notícias em tempo real para manter as informações de mercado atuais e acionáveis. Integramos técnicas de busca de dados ao vivo no MQL5 para atualizar os eventos no painel continuamente, melhorando a capacidade de resposta da interface. Essa atualização garante que possamos acessar as últimas notícias econômicas diretamente do painel, otimizando as decisões de negociação com base nos dados mais recentes.
Classe base de algoritmos populacionais como alicerce para otimização eficiente
Uma tentativa única de pesquisa para combinar uma série de algoritmos populacionais em uma única classe com o objetivo de simplificar a aplicação dos métodos de otimização. Essa abordagem não apenas abre possibilidades para o desenvolvimento de novos algoritmos, incluindo variantes híbridas, mas também estabelece um banco de testes básico universal. Este banco se torna uma ferramenta chave para a escolha do algoritmo ideal, dependendo da tarefa específica em questão.
Exemplo de CNA (Análise de Rede de Causalidade), SMOC (Controle Otimizado com Modelo Estocástico) e Teoria dos Jogos de Nash com Aprendizado Profundo
Adicionaremos Aprendizado Profundo a esses três exemplos que foram publicados em artigos anteriores e compararemos os resultados com os anteriores. O objetivo é aprender como adicionar Deep Learning a outros EAs.
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 9): Consultor Especializado em Múltiplas Estratégias (II)
O número de estratégias que podem ser integradas em um Expert Advisor é praticamente ilimitado. No entanto, cada estratégia adicional aumenta a complexidade do algoritmo. Ao incorporar múltiplas estratégias, um Expert Advisor pode se adaptar melhor às condições variáveis do mercado, potencialmente aumentando sua lucratividade. Hoje, exploraremos como implementar em MQL5 uma das estratégias mais conhecidas desenvolvidas por Richard Donchian, enquanto continuamos a aprimorar a funcionalidade do nosso Trend Constraint Expert.
Visão computacional para trading (Parte 1): Criando uma funcionalidade básica simples
Sistema de previsão do EURUSD usando visão computacional e aprendizado profundo. Descubra como redes neurais convolucionais podem reconhecer padrões complexos de preços no mercado cambial e prever o movimento da cotação com precisão de até 54%. O artigo revela a metodologia de criação de um algoritmo que utiliza tecnologias de inteligência artificial para análise visual de gráficos, em vez de indicadores técnicos tradicionais. O autor demonstra o processo de transformação dos dados de preços em "imagens", seu processamento por uma rede neural e a oportunidade única de olhar para a "consciência" da IA por meio de mapas de ativação e mapas de calor de atenção. O código prático em Python, com a utilização da biblioteca MetaTrader 5, possibilita que os leitores reproduzam o sistema e o apliquem em seu próprio trading.
Simulação de mercado: Iniciando o SQL no MQL5 (V)
No artigo anterior mostrei como você deveria proceder, a fim de conseguir adicionar o mecanismo de pesquisa. Isto para que dentro do código MQL5, você pudesse de fato fazer uso pleno do SQL. A fim de conseguir obter os resultados quando for usar o comando SELECT FROM do SQL. Mas ficou faltando falar da última função que precisamos implementar. Esta é a função DatabaseReadBind. E como para entender ela adequadamente é algo que exigirá um pouco mais de explicações. Ficou decidido que isto seria feito, não naquele artigo anterior, mas sim neste daqui. Já que o assunto é bem extenso.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana
A inferência bayesiana é a adoção do Teorema de Bayes para atualizar hipóteses de probabilidade à medida que novas informações são disponibilizadas. Isso intuitivamente leva à adaptação na análise de séries temporais, então veremos como podemos usar isso na construção de classes personalizadas, não apenas para o sinal, mas também para gerenciamento de dinheiro e trailing-stops.
Construção de previsões econômicas: potencialidades do Python
Como utilizar os dados econômicos do Banco Mundial para fazer previsões? O que acontece se combinarmos modelos de IA com economia?
Como funções de cem anos atrás podem atualizar suas estratégias de trading
Neste artigo, vamos falar sobre as funções de Rademacher e Walsh. Vamos explorar formas de aplicar essas funções na análise de séries temporais financeiras, além de considerar diferentes maneiras de usá-las no trading.
Reimaginando Estratégias Clássicas (Parte VIII): Mercados de Câmbio e Metais Preciosos no USDCAD
Nesta série de artigos, revisitamos estratégias de negociação bem conhecidas para ver se podemos melhorá-las utilizando IA. Na discussão de hoje, junte-se a nós enquanto testamos se existe uma relação confiável entre metais preciosos e moedas.
Métodos de otimização da biblioteca Alglib (Parte II)
Neste artigo, continuaremos a análise dos métodos de otimização restantes da biblioteca ALGLIB, com foco especial em seus testes em funções complexas e multidimensionais. Isso nos permitirá não apenas avaliar a eficiência de cada algoritmo, mas também identificar seus pontos fortes e fracos em diferentes condições.
Algoritmo de busca orbital atômica — Atomic Orbital Search (AOS): Modificação
Na segunda parte do artigo, continuaremos o desenvolvimento da versão modificada do algoritmo AOS (Atomic Orbital Search), focando em operadores específicos para aumentar sua eficiência e adaptabilidade. Após analisar as bases e mecânicas do algoritmo, discutiremos ideias para melhorar o desempenho e a capacidade de análise de espaços de soluções complexos, propondo novas abordagens para expandir sua funcionalidade como ferramenta de otimização.
Aprendizado de máquina em trading direcional de tendência com o exemplo do ouro
Este artigo discute uma abordagem de trading apenas em uma direção escolhida (compra ou venda). Para isso, é utilizada a técnica de inferência causal e aprendizado de máquina.
Redes neurais de maneira fácil (Parte 74): previsão adaptativa de trajetórias
Proponho a você conhecer um método bastante eficaz de previsão de trajetórias multiagentes, que é capaz de se adaptar a diferentes condições ambientais.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 18): Pesquisa de Arquitetura Neural com Vetores Próprios
Pesquisa de Arquitetura Neural, uma abordagem automatizada para determinar as configurações ideais de uma rede neural, pode ser um diferencial ao enfrentar muitas opções e grandes conjuntos de dados de teste. Examinamos como, quando emparelhado com Vetores Próprios, esse processo pode se tornar ainda mais eficiente.
Do básico ao intermediário: Ponteiro para função
Você provavelmente já deve ter ouvido falar em ponteiro. Isto quando o assunto é programação. Mas você sabia que podemos fazer uso deste tipo de dado aqui no MQL5? Isto claro, de uma forma a não perder o controle ou gerar coisas bizarras durante a execução do código. Porém, sendo um recurso com uso muito específico e voltado para certos tipos de atividade. É difícil ver alguém falando sobre o que seria de fato um ponteiro e como usar eles no MQL5.
Aplicação de regras associativas para análise de dados no Forex
Como aplicar as regras preditivas de análise de dados do varejo de supermercados ao mercado real de Forex? Como as compras de biscoitos, leite e pão estão relacionadas às transações na bolsa? Este artigo explora uma abordagem inovadora para o trading algorítmico, baseada no uso de regras associativas.
Redes neurais em trading: Análise da situação do mercado usando o transformador de padrões
Ao analisarmos a situação do mercado com nossos modelos, o elemento-chave é a vela. No entanto, sabe-se há muito tempo que os padrões de velas podem ajudar a prever movimentos futuros de preço. Neste artigo, apresentaremos um método que permite integrar essas duas abordagens.
MQL5 Trading Toolkit (Parte 4): Desenvolvendo uma Biblioteca EX5 de Gerenciamento de Histórico
Aprenda a recuperar, processar, classificar, ordenar, analisar e gerenciar posições fechadas, ordens e históricos de negociações usando MQL5, criando uma ampla biblioteca EX5 de Gerenciamento de Histórico com um método detalhado passo a passo.
Modelos polinomiais no trading
Este artigo é dedicado aos polinômios ortogonais. Seu uso pode se tornar a base para uma análise mais precisa e eficaz das informações do mercado, permitindo que o trader tome decisões mais fundamentadas.
Redes neurais em trading: Agente com memória multinível (Conclusão)
Damos continuidade ao desenvolvimento do framework FinMem, que utiliza abordagens de memória multinível, imitando os processos cognitivos humanos. Isso permite que o modelo não apenas processe dados financeiros complexos de forma eficiente, mas também se adapte a novos sinais, aumentando significativamente a precisão e a efetividade das decisões de investimento em mercados altamente dinâmicos.
Redes neurais em trading: Dupla clusterização de séries temporais (Conclusão)
Damos continuidade à implementação dos métodos propostos pelos autores do framework DUET, que apresenta uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para revelar padrões ocultos nos dados analisados.
Simulação de mercado: Position View (XVII)
No artigo anterior, fizemos com que o indicador, nos mostrasse o resultado financeiro. Porém, nem todos gostam de fazer uso de tal modo de visualização. O motivo pode variar de operador para operador. Mas em alguns casos o motivo de fato me parece bastante plausível e justificável. Fazer as atualizações no código para promover isto. Não é nem de longe uma das tarefas mais complicadas. Na verdade é algo bastante simples e singelo. Assim neste artigo, veremos como fazer este tipo de coisa.
Redes neurais de maneira fácil (Parte 72): previsão de trajetórias em condições de ruído
A qualidade da previsão de estados futuros desempenha um papel importante no método Goal-Conditioned Predictive Coding, com o qual nos familiarizamos no artigo anterior. Neste artigo, quero apresentar a vocês um algoritmo capaz de aumentar significativamente a qualidade da previsão em ambientes estocásticos, que incluem os mercados financeiros.
Redes neurais em trading: Representação adaptativa de grafos (NAFS)
Apresentamos o método NAFS (Node-Adaptive Feature Smoothing), uma abordagem não paramétrica para criar representações de nós que não requer o treinamento de parâmetros. O NAFS extrai as características de cada nó considerando seus vizinhos e, então, combina essas características de forma adaptativa para formar a representação final.
Simulação de mercado (Parte 05): Iniciando a classe C_Orders (II)
Neste artigo, explicarei como o Chart Trade conseguirá lidar, junto com o Expert Advisor, a um pedido do usuário para encerrar todas as posições que se encontram em aberto. Parece ser algo simples. Porém existem alguns agravantes que você precisa saber como lidar com eles.
Reimaginando Estratégias Clássicas (Parte VI): Análise de Múltiplos Tempos Gráficos
Nesta série de artigos, revisitamos estratégias clássicas para ver se podemos melhorá-las usando IA. No artigo de hoje, vamos examinar a popular estratégia de análise de múltiplos tempos gráficos para avaliar se a estratégia seria aprimorada com IA.
Do básico ao intermediário: Estruturas (V)
Neste artigo veremos como é feita a sobrecarga de um código estrutural. Sei que isto, é um tanto quanto difícil de entender no começo. Principalmente se você está vendo isto pela primeira vez. Porém, é muito importante que você procure assimilar estes conceitos e entender muito bem o que se passa aqui, antes de procurar se aventurar em coisas ainda mais complicadas e elaboradas.
Redes neurais em trading: Transformer contrastivo de padrões
O Transformer contrastivo de padrões realiza a análise de situações de mercado, tanto no nível de velas individuais quanto no de padrões completos. Isso contribui para aprimorar a modelagem das tendências de mercado. Além disso, o uso do aprendizado contrastivo para alinhar as representações das velas e dos padrões leva à autorregulação e ao aumento da precisão das previsões.
Desenvolvimento de sistemas de trading avançados ICT: Implementação de sinais no indicador Order Blocks
Neste artigo você vai aprender como desenvolver um indicador Order Blocks baseado no volume do livro de ofertas (profundidade de mercado) e otimizá-lo usando buffers para melhorar a precisão. Com isso, concluímos a etapa atual do projeto e nos preparamos para as próximas, nas quais será implementada uma classe de gerenciamento de risco e um robô de negociação que utilizará os sinais gerados pelo indicador.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 50): Awesome Oscillator
O Awesome Oscillator é outro indicador de Bill Williams que é usado para medir o momentum. Ele pode gerar múltiplos sinais e, portanto, revisamos estes com base em padrões, como em artigos anteriores, aproveitando as classes e a montagem do MQL5 wizard.
Migrando para o MQL5 Algo Forge (Parte 4): Trabalhando com versões e lançamentos
Vamos continuar o desenvolvimento dos projetos Simple Candles e Adwizard, detalhando os aspectos do uso do sistema de controle de versão e do repositório MQL5 Algo Forge.
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 10): RBM não convencional
As máquinas de Boltzmann restritas (Restrictive Boltzmann Machines, RBM) são, em um nível básico, uma rede neural de duas camadas capaz de realizar classificação não supervisionada através da redução de dimensionalidade. Vamos usar seus princípios básicos e ver o que acontece se a desenharmos e a treinarmos de forma não convencional. Será que conseguiremos obter um filtro de sinais útil?
Algoritmos de otimização de população: Resistência a ficar preso em extremos locais (Parte II)
Continuamos nosso experimento que visa examinar o comportamento dos algoritmos de otimização de população no contexto de sua capacidade de escapar eficientemente de mínimos locais quando a diversidade da população é baixa e alcançar máximos globais. Os resultados da pesquisa são fornecidos.
Algoritmo de otimização de migração animal (AMO)
O artigo é dedicado ao algoritmo AMO, que modela o processo de migração sazonal dos animais em busca de condições ideais para sobrevivência e reprodução. As principais características do AMO incluem o uso da vizinhança topológica e um mecanismo probabilístico de atualização, tornando-o simples de implementar e flexível para diversas tarefas de otimização.
Integração do MQL5 com pacotes de processamento de dados (Parte 3): Visualização de dados aprimorada
Neste artigo, vamos explorar a visualização de dados avançada, incluindo recursos como interatividade, dados em camadas e elementos dinâmicos, que permitem aos traders examinar tendências, padrões e correlações com mais eficácia.
Arbitragem no trading Forex: Análise dos movimentos de moedas sintéticas e seu retorno à média
Neste artigo, tentaremos analisar os movimentos das moedas sintéticas na integração Python + MQL5 e entender até que ponto a arbitragem ainda é viável no Forex atualmente. Além disso: apresentaremos um código pronto em Python para análise de moedas sintéticas e explicaremos em detalhes o que são essas moedas no mercado Forex.
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (Conclusão)
O artigo analisa a implementação prática do framework HiSSD em tarefas de trading algorítmico. É mostrado como a hierarquia de habilidades e a arquitetura adaptativa podem ser utilizadas para desenvolver estratégias de negociação robustas.