Artigos sobre programação nas linguagens MQL4 e MQL5

icon

Leia os artigos publicados aqui para aprender MQL5, a linguagem das estratégias de negociação. A maioria desses artigos foi escrita por vocês, membros da MQL5.community. Todos eles estão divididos em categorias para encontrar respostas rápidas relacionadas a aspectos específicos da programação: "Integração", "Testador", "Estratégias de negociação" e muito mais.

Acompanhe as novas publicações e participe de suas discussões no Fórum!

Novo artigo
recentes | melhores
preview
Simulação de mercado: Position View (VII)

Simulação de mercado: Position View (VII)

Neste artigo, começaremos a fazer algumas melhorias no indicador de posição. Isto para que seja possível interagir com ele. E modificar as linhas de preço, ou fechar uma posição diretamente via interação com o indicador de posição. Antes de realmente começarmos a parte da implementação. Vamos entender uma coisa aqui. Isto para os menos avisados. Não é possível, de maneira ou forma alguma, usar um indicador a fim de modificar algo no servidor de negociação. Isto por conta que o MetaTrader 5, conta com um sistema de segurança que permite apenas e somente aos Expert Advisores, fazerem algo em uma ordem ou posição. Nenhuma outra aplicação que não seja um Expert Advisor, conseguirá manipular ordens ou posições.
preview
Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 8): Desenvolvimento do Expert Advisor (II)

Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 8): Desenvolvimento do Expert Advisor (II)

Pense em um Expert Advisor independente. Anteriormente, discutimos um Expert Advisor baseado em indicador que também contava com um script independente para desenhar a geometria de risco e recompensa. Hoje, discutiremos a arquitetura de um Expert Advisor em MQL5, que integra todos os recursos em um único programa.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 28): GANs revisitados com uma introdução às taxas de aprendizado

Técnicas do MQL5 Wizard que você deve conhecer (Parte 28): GANs revisitados com uma introdução às taxas de aprendizado

A Taxa de Aprendizado é um tamanho de passo em direção a um objetivo de treinamento nos processos de treinamento de muitos algoritmos de aprendizado de máquina. Examinamos o impacto que seus diversos cronogramas e formatos podem ter no desempenho de uma Rede Generativa Adversária, um tipo de rede neural que já havíamos analisado em um artigo anterior.
preview
Algoritmo de otimização da sociedade anárquica — Anarchic society optimization (ASO)

Algoritmo de otimização da sociedade anárquica — Anarchic society optimization (ASO)

No próximo artigo, conheceremos o algoritmo Anarchic Society Optimization (ASO) e discutiremos como um algoritmo baseado no comportamento irracional e aventureiro dos participantes de uma sociedade anárquica — um sistema anômalo de interação social, livre de autoridade centralizada e de qualquer tipo de hierarquia — é capaz de explorar o espaço de soluções e evitar armadilhas de ótimos locais. O artigo apresentará uma estrutura unificada do ASO, aplicável tanto a problemas contínuos quanto a problemas discretos.
preview
Redes neurais em trading: Transformer contrativo de padrões (Conclusão)

Redes neurais em trading: Transformer contrativo de padrões (Conclusão)

No último artigo da série, analisamos o framework Atom-Motif Contrastive Transformer (AMCT), que utiliza aprendizado contrastivo para identificar padrões-chave em todos os níveis, desde os elementos básicos até estruturas complexas. Neste artigo, continuamos a implementar as abordagens do AMCT com recursos do MQL5.
preview
Sistemas neurossimbólicos no algotrading: Unindo regras simbólicas e redes neurais

Sistemas neurossimbólicos no algotrading: Unindo regras simbólicas e redes neurais

Este artigo fala sobre a experiência de desenvolver um sistema de negociação híbrido que combina análise técnica clássica com redes neurais. O autor destrincha a arquitetura do sistema, desde a análise básica de padrões e estrutura da rede neural até os mecanismos de tomada de decisão, compartilhando código real e observações práticas.
preview
Critérios de tendência. Conclusão

Critérios de tendência. Conclusão

Neste artigo, analisaremos as particularidades da aplicação prática de alguns critérios de tendência. Além disso, tentaremos desenvolver alguns novos critérios. A principal atenção será dada à eficácia desses critérios na análise de dados de mercado e no trading.
preview
Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Evolução em duas fases

Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Evolução em duas fases

Este artigo dá continuidade ao tema do comportamento social dos organismos vivos e ao seu impacto no desenvolvimento de um novo modelo matemático, o ASBO (Adaptive Social Behavior Optimization). Exploraremos a evolução em duas fases, realizaremos testes no algoritmo e apresentaremos as conclusões. Assim como na natureza, onde grupos de organismos vivos se unem para sobreviver, o ASBO utiliza princípios de comportamento coletivo para resolver problemas complexos de otimização.
preview
Do básico ao intermediário: Eventos de mouse

Do básico ao intermediário: Eventos de mouse

Este artigo, é uns dos que definitivamente, é necessário não apenas ver o código e o estudar para compreender o que estará acontecendo. É de fato, necessário, criar uma aplicação executável e a utilizar em um gráfico qualquer. Isto maneira a conseguir entender pequenos detalhes, que de outra forma são muito complicados de serem compreendidos. Como por exemplo, a combinação de teclado com o mouse, a fim de construir certos tipos de coisas.
preview
Seleção de características passo a passo em MQL5

Seleção de características passo a passo em MQL5

Neste artigo, apresentamos uma versão modificada da seleção de características passo a passo, implementada em MQL5. Essa abordagem é baseada nas técnicas descritas em Modern Data Mining Algorithms in C++ and CUDA C de Timothy Masters.
preview
Mecanismos de gating em aprendizado por ensemble

Mecanismos de gating em aprendizado por ensemble

Neste artigo, continuamos nossa exploração de modelos ensemble discutindo o conceito de gates, especificamente como eles podem ser úteis na combinação das saídas dos modelos para aprimorar a precisão das previsões ou a generalização do modelo.
preview
Simulação de mercado: A união faz a força (III)

Simulação de mercado: A união faz a força (III)

Neste artigo, apresentarei o nosso sistema de simulação de operações a mercado. Apesar deste sistema está praticamente terminado. Ainda existem algumas coisas a serem feitas e implementadas. Além de algumas poucas mudanças que ainda precisam ser feitas. Mas mesmo com tudo que já foi implementado. Confesso que já estou cansado de ficar preso na implementação deste sistema.
preview
O Método de Agrupamento de Manipulação de Dados: Implementando o Algoritmo Combinatório em MQL5

O Método de Agrupamento de Manipulação de Dados: Implementando o Algoritmo Combinatório em MQL5

Neste artigo, continuamos nossa exploração da família de algoritmos do Método de Agrupamento de Manipulação de Dados, com a implementação do Algoritmo Combinatório, juntamente com sua versão refinada, o Algoritmo Combinatório Seletivo em MQL5.
preview
Algoritmo de Irrigação Artificial — Artificial Showering Algorithm (ASHA)

Algoritmo de Irrigação Artificial — Artificial Showering Algorithm (ASHA)

Este artigo apresenta o Algoritmo de Irrigação Artificial (ASHA), um novo método metaheurístico desenvolvido para resolver problemas gerais de otimização. Baseado na simulação dos processos de fluxo e acúmulo de água, este algoritmo constrói o conceito de um campo ideal, no qual cada unidade de recurso (água) é convocada para buscar a solução ótima. Descubra como o ASHA adapta os princípios de fluxo e acúmulo para distribuir recursos de forma eficiente em um espaço de busca e conheça sua implementação e os resultados dos testes.
preview
Recursos do Assistente MQL5 que você precisa conhecer (Parte 49): Aprendizado por reforço e otimização proximal de política

Recursos do Assistente MQL5 que você precisa conhecer (Parte 49): Aprendizado por reforço e otimização proximal de política

A otimização proximal de política (Proximal Policy Optimization) é mais um algoritmo de aprendizado por reforço, que atualiza a política, muitas vezes em forma de rede, em passos muito pequenos para garantir a estabilidade do modelo. Como de costume, vamos analisar como esse algoritmo pode ser aplicado em um EA construído com a ajuda do Assistente.
preview
Gerenciamento de riscos (Parte 2): Implementação do cálculo de lotes na interface gráfica

Gerenciamento de riscos (Parte 2): Implementação do cálculo de lotes na interface gráfica

Neste artigo, analisaremos como aprimorar e aplicar de forma mais eficiente os conceitos apresentados no artigo anterior, utilizando as poderosas bibliotecas de elementos gráficos de controle do MQL5. Conduzirei você passo a passo pelo processo de criação de uma interface gráfica totalmente funcional, explicando o plano de projeto subjacente, bem como o propósito e o princípio de funcionamento de cada método empregado. Além disso, ao final do artigo testaremos o painel criado, a fim de confirmar seu correto funcionamento e sua aderência aos objetivos estabelecidos.
preview
Previsão de barras Renko com a ajuda de IA CatBoost

Previsão de barras Renko com a ajuda de IA CatBoost

Como usar barras Renko junto com IA? Vamos analisar o Renko-trading no Forex com precisão de previsões de até 59.27%. Exploraremos as vantagens das barras Renko para filtrar o ruído do mercado, entenderemos por que indicadores de volume são mais importantes do que padrões de preço e como configurar o tamanho ideal do bloco Renko para EURUSD. Um guia passo a passo para integrar CatBoost, Python e MetaTrader 5 para criar seu próprio sistema de previsão Renko Forex. Perfeito para traders que desejam ir além da análise técnica tradicional.
preview
Simulação de mercado: Position View (IX)

Simulação de mercado: Position View (IX)

Neste artigo, que será um artigo divisor de águas. Vamos começar a explorar de maneira um pouco mais profunda a interação entre as aplicações que estão sendo desenvolvidas para dar suporte total ao sistema de replay/simulação. Aqui vamos analisar um problema. Este tem de um lado, algo bastante chato, mas de outro algo muito interessante de explicar como resolver. E o problema é: Como fazer para adicionar as linhas de take profit e stop loss, depois que elas foram removidas? Isto sem usar o terminal, mas sim fazendo a operação direto no gráfico. Bem isto de fato é algo, a primeira vista simples. Porém existem alguns percalços a serem superados.
preview
Métodos de William Gann (Parte III): A astrologia funciona?

Métodos de William Gann (Parte III): A astrologia funciona?

A posição dos planetas e estrelas influencia os mercados financeiros? Vamos recorrer à estatística e aos big data para embarcar em uma jornada fascinante pelo mundo onde as estrelas e os gráficos do mercado se cruzam.
preview
Desenvolvimento do Kit de Ferramentas de Análise de Price Action (Parte 1): Projetor de Gráficos

Desenvolvimento do Kit de Ferramentas de Análise de Price Action (Parte 1): Projetor de Gráficos

Este projeto tem como objetivo aproveitar o algoritmo MQL5 para desenvolver um conjunto abrangente de ferramentas de análise para o MetaTrader 5. Essas ferramentas — que vão desde scripts e indicadores até modelos de IA e expert advisors — irão automatizar o processo de análise de mercado. Em alguns momentos, esse desenvolvimento gerará ferramentas capazes de realizar análises avançadas sem intervenção humana e prever resultados em plataformas apropriadas. Nenhuma oportunidade será perdida. Junte-se a mim enquanto exploramos o processo de construção de um conjunto robusto de ferramentas personalizadas de análise de mercado. Começaremos desenvolvendo um programa simples em MQL5 que chamei de Projetor de Gráficos.
preview
Do básico ao intermediário: Objetos (IV)

Do básico ao intermediário: Objetos (IV)

Este talvez venha a ser o artigo mais divertido até este momento. Isto porque, aqui iremos implementar uma modificação de um objeto presente no MetaTrader 5, a fim de conseguir criar um outro objeto, que não existe originalmente na plataforma. Claro que o que será visto aqui, pode parecer meio que doideira. Mas funciona e tem um objetivo bastante interessante.
preview
Criando um Expert Advisor Integrado MQL5-Telegram (Parte 7): Análise de Comandos para Automação de Indicadores em Gráficos

Criando um Expert Advisor Integrado MQL5-Telegram (Parte 7): Análise de Comandos para Automação de Indicadores em Gráficos

Neste artigo, exploramos como integrar comandos do Telegram com MQL5 para automatizar a adição de indicadores em gráficos de negociação. Cobrimos o processo de análise (parsing) dos comandos dos usuários, sua execução no MQL5 e o teste do sistema para garantir uma negociação baseada em indicadores de forma fluida.
preview
Redes neurais em trading: Segmentação guiada (Conclusão)

Redes neurais em trading: Segmentação guiada (Conclusão)

Damos continuidade ao trabalho iniciado no artigo anterior sobre a construção do framework RefMask3D utilizando MQL5. Esse framework foi desenvolvido para um estudo aprofundado da interação multimodal e da análise de características em nuvens de pontos, com posterior identificação do objeto-alvo com base em uma descrição fornecida em linguagem natural.
preview
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multidimensionais (Conclusão)

Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multidimensionais (Conclusão)

Continuamos a implementação do framework DA-CG-LSTM, que propõe métodos inovadores de análise e previsão de séries temporais. O uso de CG-LSTM e do mecanismo de atenção dupla permite identificar com maior precisão tanto dependências de longo prazo quanto de curto prazo nos dados, o que é especialmente útil para o trabalho com mercados financeiros.
preview
Algoritmos de otimização populacionais: objetos de busca multissociais artificiais (artificial Multi-Social search Objects, MSO)

Algoritmos de otimização populacionais: objetos de busca multissociais artificiais (artificial Multi-Social search Objects, MSO)

Continuação do artigo anterior como desenvolvimento da ideia de grupos sociais. No novo artigo, explora-se a evolução dos grupos sociais utilizando algoritmos de movimentação e memória. Os resultados ajudarão a entender a evolução dos sistemas sociais e aplicá-los na otimização e busca de soluções.
preview
De Iniciante a Especialista: Depuração Colaborativa em MQL5

De Iniciante a Especialista: Depuração Colaborativa em MQL5

A resolução de problemas pode estabelecer uma rotina concisa para dominar habilidades complexas, como programar em MQL5. Essa abordagem permite que você se concentre na resolução de problemas enquanto desenvolve suas habilidades ao mesmo tempo. Quanto mais problemas você resolver, mais conhecimento avançado será transferido para o seu cérebro. Pessoalmente, acredito que a depuração é a forma mais eficaz de dominar a programação. Hoje, vamos percorrer o processo de limpeza de código e discutir as melhores técnicas para transformar um programa desorganizado em um funcional e limpo. Leia este artigo e descubra insights valiosos.
preview
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 29): Taxas de aprendizado e perceptrons multicamadas

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 29): Taxas de aprendizado e perceptrons multicamadas

Estamos concluindo a análise da sensibilidade da taxa de aprendizado ao desempenho do EA, estudando taxas de aprendizado adaptáveis Essas taxas devem ser ajustadas para cada parâmetro da camada durante o treinamento, por isso precisamos avaliar os potenciais benefícios em relação às perdas esperadas no desempenho.
preview
Do básico ao intermediário: Acesso aleatório (I)

Do básico ao intermediário: Acesso aleatório (I)

Neste artigo teremos a nossa primeira experiência no que se refere ao acesso aleatório ao conteúdo de um arquivo. Isto visando tanto a escrita quanto também a leitura de informações e dados presentes em um arquivo. No entanto, como este tema é um tanto quanto longo para ser explicado em um único artigo. Aqui iremos apenas fazer uma introdução sobre esta questão do acesso aleatório.
preview
Redes neurais em trading: Modelos com uso de wavelet transform e atenção multitarefa (Conclusão)

Redes neurais em trading: Modelos com uso de wavelet transform e atenção multitarefa (Conclusão)

No artigo anterior, exploramos os fundamentos teóricos e começamos a implementar as abordagens do framework Multitask-Stockformer, que combina wavelet transform e o modelo multitarefa Self-Attention. Damos continuidade à implementação dos algoritmos desse framework e avaliamos sua eficácia com dados históricos reais.
preview
Otimização por neuroboides — Neuroboids Optimization Algorithm (NOA)

Otimização por neuroboides — Neuroboids Optimization Algorithm (NOA)

Trata-se de uma nova metaheurística de otimização bioinspirada e autoral, denominada NOA (Neuroboids Optimization Algorithm), que combina princípios de inteligência coletiva e redes neurais. Ao contrário dos métodos clássicos, o algoritmo utiliza uma população de "neuroboides" autoaprendizes, cada um com sua própria rede neural, que adapta a estratégia de busca em tempo real. O artigo em questão apresenta a arquitetura do algoritmo, os mecanismos de autoaprendizado dos agentes e as perspectivas de aplicação dessa abordagem híbrida em tarefas complexas de otimização.
preview
Redes neurais em trading: Aprendizado dependente de contexto com memória (Conclusão)

Redes neurais em trading: Aprendizado dependente de contexto com memória (Conclusão)

Estamos finalizando a implementação do framework MacroHFT para trading de alta frequência com criptomoedas, que utiliza aprendizado por reforço dependente de contexto e memória para se adaptar às condições dinâmicas do mercado. E para concluir este artigo, será realizado um teste com os métodos implementados utilizando dados históricos reais, a fim de avaliar sua eficácia.
preview
Ganhe uma Vantagem Sobre Qualquer Mercado (Parte III): Índice de Gastos com Cartões Visa

Ganhe uma Vantagem Sobre Qualquer Mercado (Parte III): Índice de Gastos com Cartões Visa

No mundo dos big data, existem milhões de conjuntos de dados alternativos que têm o potencial de aprimorar nossas estratégias de negociação. Nesta série de artigos, vamos ajudá-lo a identificar os conjuntos de dados públicos mais informativos.
preview
Reimaginando Estratégias Clássicas (Parte 12): Estratégia de Breakout EURUSD

Reimaginando Estratégias Clássicas (Parte 12): Estratégia de Breakout EURUSD

Junte-se a nós hoje enquanto nos desafiamos a construir uma estratégia de negociação de rompimento lucrativa em MQL5. Selecionamos o par EURUSD e tentamos negociar rompimentos de preço no período de uma hora. Nosso sistema teve dificuldade em distinguir entre falsos rompimentos e o início de tendências reais. Camadas de filtros foram adicionadas ao sistema para minimizar perdas e aumentar ganhos. No final, conseguimos tornar nosso sistema lucrativo e menos propenso a falsos rompimentos.
preview
Otimização por neuroboides — Neuroboids Optimization Algorithm (NOA)

Otimização por neuroboides — Neuroboids Optimization Algorithm (NOA)

Trata-se de uma nova metaheurística de otimização bioinspirada e autoral, denominada NOA (Neuroboids Optimization Algorithm), que combina princípios de inteligência coletiva e redes neurais. Ao contrário dos métodos clássicos, o algoritmo utiliza uma população de "neuroboides" autoaprendizes, cada um com sua própria rede neural, que adapta a estratégia de busca em tempo real. O artigo em questão apresenta a arquitetura do algoritmo, os mecanismos de autoaprendizado dos agentes e as perspectivas de aplicação dessa abordagem híbrida em tarefas complexas de otimização.
preview
De Python para MQL5: Uma Jornada em Sistemas de Trading Inspirados na Computação Quântica

De Python para MQL5: Uma Jornada em Sistemas de Trading Inspirados na Computação Quântica

O artigo explora o desenvolvimento de um sistema de trading inspirado na computação quântica, fazendo a transição de um protótipo em Python para uma implementação em MQL5 para trading no mundo real. O sistema utiliza princípios da computação quântica, como superposição e emaranhamento, para analisar estados de mercado, embora rode em computadores clássicos usando simuladores quânticos. Os principais recursos incluem um sistema de três qubits para analisar oito estados de mercado simultaneamente, períodos de análise de 24 horas e sete indicadores técnicos para análise de mercado. Embora as taxas de acurácia possam parecer modestas, elas fornecem uma vantagem significativa quando combinadas com estratégias adequadas de gerenciamento de risco.
preview
Redes neurais em trading: Agente multimodal com ferramentas complementares (FinAgent)

Redes neurais em trading: Agente multimodal com ferramentas complementares (FinAgent)

Apresentamos o framework do agente multimodal para negociação financeira FinAgent, projetado para analisar dados de diferentes tipos que refletem a dinâmica do mercado e padrões históricos de negociação.
preview
Redes neurais em trading: Sistema multiagente com validação conceitual (FinCon)

Redes neurais em trading: Sistema multiagente com validação conceitual (FinCon)

Apresentamos o framework FinCon, que é um sistema multiagente baseado em grandes modelos de linguagem (LLM). O framework utiliza reforço verbal conceitual para melhorar a tomada de decisões e o gerenciamento de riscos, permitindo realizar diversas tarefas financeiras de forma eficiente.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 23): CNNs

Técnicas do MQL5 Wizard que você deve conhecer (Parte 23): CNNs

As Redes Neurais Convolucionais são outro algoritmo de aprendizado de máquina que tende a se especializar em decompor conjuntos de dados multidimensionais em partes constituintes principais. Vamos ver como isso é normalmente alcançado e explorar uma possível aplicação para traders em outra classe de sinais do MQL5 Wizard.
preview
Redes neurais em trading: Modelo hiperbólico de difusão latente (HypDiff)

Redes neurais em trading: Modelo hiperbólico de difusão latente (HypDiff)

Esse artigo analisa formas de codificar dados brutos no espaço latente hiperbólico por meio de processos de difusão anisotrópicos. Isso ajuda a preservar com mais precisão as características topológicas da situação atual do mercado e melhora a qualidade de sua análise.
preview
Automatização de estratégias de trading com MQL5 (Parte 13): Criação de um algoritmo de negociação para o padrão "Cabeça e Ombros"

Automatização de estratégias de trading com MQL5 (Parte 13): Criação de um algoritmo de negociação para o padrão "Cabeça e Ombros"

Neste artigo, automatizaremos o padrão "Cabeça e Ombros" em MQL5. Analisaremos sua arquitetura, implementaremos um EA para sua detecção e negociação, e testaremos os resultados no histórico. Esse processo revela um algoritmo de negociação prático, que pode ser aprimorado.