Cliente no Connexus (Parte 7): Adicionando a camada de cliente
Neste artigo, continuamos o desenvolvimento da biblioteca Connexus. Neste capítulo, criamos a classe CHttpClient, responsável por enviar a requisição e receber a ordem. Também abordamos o conceito de mocks, separando a biblioteca da função WebRequest, o que garante maior flexibilidade para os usuários.
Otimização em estilo Battle Royale — Battle Royale Optimizer (BRO)
O artigo descreve uma abordagem inovadora no campo da otimização, que combina a competição espacial entre soluções com o estreitamento adaptativo do espaço de busca, tornando o Battle Royale Optimizer uma ferramenta promissora para análise financeira.
Otimização com neuroboids — Neuroboids Optimization AlgorithmN 2 (NOA2)
O novo algoritmo autoral de otimização NOA2 (Neuroboids Optimization Algorithm 2) combina os princípios da inteligência de enxame com controle baseado em redes neurais. O NOA2 funde a mecânica do comportamento coletivo dos neuroboids com um sistema neural adaptativo, que permite aos agentes ajustar seu comportamento de forma autônoma durante o processo de busca pelo ótimo. O algoritmo está em fase ativa de desenvolvimento e demonstra potencial para resolver tarefas complexas de otimização.
Desenvolvimento do Kit de Ferramentas de Análise de Price Action (Parte 5): Volatility Navigator EA
Determinar a direção do mercado pode ser simples, mas saber quando entrar pode ser desafiador. Como parte da série intitulada "Desenvolvimento do Kit de Ferramentas de Análise de Price Action", tenho o prazer de apresentar mais uma ferramenta que fornece pontos de entrada, níveis de take profit e definições de stop loss. Para isso, utilizamos a linguagem de programação MQL5. Vamos nos aprofundar em cada etapa neste artigo.
Do básico ao intermediário: Filas, Listas e Árvores (IV)
Neste artigo iremos finalizar a parte referente a implementação e explicação sobre o que seria uma lista encadeada. Porém a implementação mostrada aqui, não irá mostrar um certo detalhe que podemos fazer dentro de uma lista encadeada. Isto será visto futuramente em um outro artigo.
Simulação de mercado: Position View (XVIII)
Neste artigo, mostrei da forma o mais didática possível. Como você pode conseguir modificar e gerar um código que seja capaz de cumprir alguns objetivos. Isto modificando o mínimo possível um código já existente. Iremos adicionar um indicador de volume, ao mesmo tempo impedir que o usuário ou operador venha a remover objetos criados pelo indicador de posição.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 34): Embedding de Preços com um RBM Não Convencional
Máquinas de Boltzmann Restritas são uma forma de rede neural que foi desenvolvida no meio da década de 1980, numa época em que os recursos computacionais eram extremamente caros. No início, ela dependia de Gibbs Sampling e Divergência Contrastiva para reduzir a dimensionalidade ou capturar as probabilidades/propriedades ocultas sobre os conjuntos de dados de treinamento de entrada. Examinamos como o Backpropagation pode realizar de forma similar quando o RBM 'embebe' os preços para um Multi-Layer-Perceptron de previsão.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 35): Regressão por Vetores de Suporte
A Regressão por Vetores de Suporte é uma maneira idealista de encontrar uma função ou 'hiperplano' que melhor descreva a relação entre dois conjuntos de dados. Tentamos explorar isso na previsão de séries temporais dentro das classes personalizadas do MQL5 wizard.
Como construir e otimizar um sistema de trading baseado em volume (Chaikin Money Flow - CMF)
Neste artigo, forneceremos um indicador baseado em volume, o Chaikin Money Flow (CMF), após identificar como ele pode ser construído, calculado e utilizado. Vamos compreender como construir um indicador personalizado. Compartilharemos algumas estratégias simples que podem ser usadas e, em seguida, as testaremos para entender qual delas é melhor.
Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)
Damos continuidade ao trabalho de implementação das abordagens do framework CATCH, que combina a transformada de Fourier e o mecanismo de patching em frequência, possibilitando a detecção precisa de anomalias de mercado. Nesta etapa, concluímos a realização da nossa própria versão das abordagens propostas e conduziremos testes com os novos modelos utilizando dados históricos reais.
Solicitação no Connexus (Parte 6): Criando uma Requisição e Resposta HTTP
Neste sexto artigo da série da biblioteca Connexus, focamos em uma requisição HTTP completa, cobrindo cada componente que compõe uma requisição. Criamos uma classe que representa a requisição como um todo, o que nos ajudou a reunir as classes criadas anteriormente.
Visão computacional para trading (Parte 1): Criando uma funcionalidade básica simples
Sistema de previsão do EURUSD usando visão computacional e aprendizado profundo. Descubra como redes neurais convolucionais podem reconhecer padrões complexos de preços no mercado cambial e prever o movimento da cotação com precisão de até 54%. O artigo revela a metodologia de criação de um algoritmo que utiliza tecnologias de inteligência artificial para análise visual de gráficos, em vez de indicadores técnicos tradicionais. O autor demonstra o processo de transformação dos dados de preços em "imagens", seu processamento por uma rede neural e a oportunidade única de olhar para a "consciência" da IA por meio de mapas de ativação e mapas de calor de atenção. O código prático em Python, com a utilização da biblioteca MetaTrader 5, possibilita que os leitores reproduzam o sistema e o apliquem em seu próprio trading.
MQL5 Trading Toolkit (Parte 5): Expandindo a Biblioteca EX5 de Gerenciamento de Histórico com Funções de Posição
Descubra como criar funções exportáveis em EX5 para consultar e salvar de forma eficiente dados históricos de posições. Neste guia passo a passo, ampliaremos a biblioteca EX5 de gerenciamento de histórico desenvolvendo módulos que recuperam propriedades-chave da posição fechada mais recentemente. Isso inclui lucro líquido, duração da negociação, stop loss em pips, take profit, valores de lucro e vários outros detalhes importantes.
Reimaginando Estratégias Clássicas (Parte 13): Minimizando o Atraso em Cruzamentos de Médias Móveis
Os cruzamentos de médias móveis são amplamente conhecidos pelos traders em nossa comunidade, e ainda assim o núcleo da estratégia mudou muito pouco desde sua criação. Nesta discussão, apresentaremos um leve ajuste à estratégia original, que busca minimizar o atraso presente na estratégia de negociação. Todos os fãs da estratégia original podem considerar revisar a estratégia de acordo com os insights que discutiremos hoje. Ao usar 2 médias móveis com o mesmo período, reduzimos consideravelmente o atraso na estratégia de negociação, sem violar os princípios fundamentais da estratégia.
Integre seu próprio LLM ao EA (Parte 5): Desenvolva e Teste Estratégia de Trading com LLMs (III) – Adapter-Tuning
Com o rápido desenvolvimento da inteligência artificial atualmente, os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial, portanto devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e então aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
Desenvolvimento de ferramentas para análise do movimento de preços (Parte 7): Expert Advisor Signal Pulse
Libere o potencial da análise multitimeframe com o Signal Pulse, um EA em MQL5 que combina as Bandas de Bollinger e o Oscilador Estocástico para fornecer sinais de negociação precisos com alta probabilidade de ocorrência. Descubra como implementar essa estratégia e visualizar de forma eficiente oportunidades de compra e venda usando setas. O EA é ideal para traders que buscam aprimorar suas decisões por meio de análise automática em vários timeframes.
Codificação ordinal de variáveis nominais
Neste artigo, discutiremos e demonstraremos como transformar variáveis nominais em formatos numéricos adequados para algoritmos de aprendizado de máquina, utilizando tanto Python quanto MQL5.
Simplificando a negociação com base em notícias (Parte 6): Executando trades (III)
Neste artigo será implementada a ordenação de notícias para eventos econômicos individuais com base em seus identificadores. Além disso, as consultas SQL anteriores serão aprimoradas para fornecer informações adicionais ou reduzir o tempo de execução da consulta. O código criado nos artigos anteriores se tornará funcional.
Otimização de recifes de coral — Coral Reefs Optimization (CRO)
Neste artigo é apresentada uma análise abrangente do algoritmo de otimização de recifes de coral (CRO), um método meta-heurístico inspirado nos processos biológicos de formação e desenvolvimento de recifes de coral. Ele modela aspectos-chave da evolução dos corais: reprodução externa e interna, fixação de larvas, reprodução assexuada e competição por espaço limitado no recife. É dada atenção especial à versão aprimorada do algoritmo.
Algoritmo de otimização caótica — Chaos optimization algorithm (COA)
Algoritmo de otimização caótica (COA) aprimorado, que combina a influência do caos com mecanismos adaptativos de busca. O algoritmo utiliza diversos mapeamentos caóticos e componentes inerciais para explorar o espaço de busca. O artigo revela os fundamentos teóricos dos métodos caóticos de otimização financeira.
Desenvolvendo um Expert Advisor de Breakout Baseado em Eventos de Notícias do Calendário em MQL5
A volatilidade tende a atingir picos em torno de eventos de notícias de alto impacto, criando oportunidades significativas de breakout. Neste artigo, iremos delinear o processo de implementação de uma estratégia de breakout baseada em calendário. Abordaremos tudo, desde a criação de uma classe para interpretar e armazenar dados do calendário, o desenvolvimento de backtests realistas utilizando esses dados e, por fim, a implementação do código de execução para negociação ao vivo.
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 10): Golden Cross e Death Cross Estratégicos (EA)
Você sabia que as estratégias Golden Cross e Death Cross, baseadas no cruzamento de médias móveis, são alguns dos indicadores mais confiáveis para identificar tendências de mercado de longo prazo? Um Golden Cross sinaliza uma tendência de alta quando uma média móvel mais curta cruza acima de uma média mais longa, enquanto o Death Cross indica uma tendência de baixa quando a média mais curta cruza abaixo. Apesar de sua simplicidade e eficácia, aplicar essas estratégias manualmente frequentemente leva a oportunidades perdidas ou negociações atrasadas.
Recursos do Assistente MQL5 que você precisa conhecer (Parte 52): Oscilador Accelerator
O Oscilador de Aceleração (Accelerator Oscillator) é mais um dos indicadores de Bill Williams, que monitora a aceleração do impulso de preço, e não apenas sua velocidade. Embora seja em muitos aspectos semelhante ao oscilador Awesome, que analisamos em um artigo recente, ele busca evitar os efeitos de defasagem, concentrando-se na aceleração e não apenas na taxa de variação. Como de costume, vamos examinar os padrões do indicador e também seu significado no trading com o uso de um EA criado no Assistente.
Gerenciamento de riscos (Parte 1): Fundamentos da construção de uma classe de gerenciamento de riscos
Neste artigo, analisaremos os fundamentos do gerenciamento de riscos no trading e veremos como criar nossas primeiras funções para calcular o lote adequado para uma operação, assim como o stop loss. Além disso, examinaremos em detalhes como essas funções funcionam, explicando cada etapa. Nosso objetivo é fornecer uma compreensão clara de como aplicar esses conceitos na negociação automática. No final, aplicaremos tudo na prática, criando um script simples com o arquivo incluível que desenvolveremos.
Do básico ao intermediário: Sobrecarga de operadores (I)
Neste artigo começaremos a ver como seria a implementação da chamada sobrecarga de operadores. Iremos começar vendo a motivação por detrás de tal implementação. Assim como também veremos que nem sempre as coisas são tão complicadas como parecem.
Automatizando Estratégias de Negociação em MQL5 (Parte 3): O Sistema Zone Recovery RSI para Gestão Dinâmica de Operações
Neste artigo, criamos um Sistema EA Zone Recovery RSI em MQL5, utilizando sinais de RSI para acionar operações e uma estratégia de recuperação para gerenciar perdas. Implementamos uma classe "ZoneRecovery" para automatizar as entradas de operações, a lógica de recuperação e o gerenciamento de posições. O artigo conclui com insights de backtesting para otimizar a performance e aprimorar a eficácia do EA.
Simulação de mercado: A união faz a força (I)
Estamos chegando aos finalmente. O desenvolvimento do replay / simulador está quase concluído. É bem verdade que ainda precisaremos fazer algumas poucas coisas. Mas frente a tudo que realmente já foi feito. Implementar o que falta será moleza. Mas como tudo que será mostrado neste artigo, precisará ser adequadamente digerido e compreendido. Quero que você, meu caro leitor e entusiasta.
Gerenciamento de riscos (Parte 5): Integração do sistema de gerenciamento de riscos ao EA
Neste artigo, implementaremos o sistema de gerenciamento de risco desenvolvido em publicações anteriores e adicionaremos o indicador Order Blocks apresentado em outros artigos. Além disso, será realizado um backtest para comparar os resultados com a aplicação do sistema de gerenciamento de risco e para avaliar o impacto do risco dinâmico.
Gerenciamento de riscos (Parte 4): Conclusão dos métodos-chave da classe
Este artigo é a quarta parte da nossa série sobre gerenciamento de riscos em MQL5, onde continuamos a explorar métodos avançados de proteção e otimização de estratégias de negociação. Após termos estabelecido as bases importantes nas partes anteriores, agora focaremos em finalizar todos os métodos que ficaram pendentes na terceira parte, incluindo as funções responsáveis por verificar o atingimento de determinados níveis de lucro ou prejuízo. Além disso, o artigo introduz novos eventos-chave que garantem um controle mais preciso e flexível.
Do básico ao intermediário: Filas, Listas e Árvores (VII)
Neste artigo, iremos demonstrar e explicar de uma maneira bastante lucida, como ocorre a remoção de um node de uma árvore. Algo que na maior parte das vezes, mais gera dúvidas e confusão na mente de iniciantes do que necessariamente os ajuda a entender como todo o processo acontece. E por que ele precisa ser feito desta ou daquela maneira.
Trading por pares: negociação algorítmica com auto-otimização baseada na diferença de pontuação Z
Neste artigo, analisaremos o que é o trading por pares e como ocorre a negociação baseada em correlações. Também criaremos um EA para automatizar o trading por pares e adicionaremos a possibilidade de otimização automática desse algoritmo de negociação com base em dados históricos. Além disso, dentro do projeto, aprenderemos a calcular as divergências entre dois pares por meio da pontuação Z.
Desenvolvimento de um sistema de monitoramento de entradas de swing (EA)
À medida que o ano se aproxima do fim, traders de longo prazo costumam refletir sobre o histórico do mercado para analisar seu comportamento e tendências, visando projetar potenciais movimentos futuros. Neste artigo, exploraremos o desenvolvimento de um Expert Advisor (EA) de monitoramento de entradas de longo prazo usando MQL5. O objetivo é abordar o desafio das oportunidades de negociação de longo prazo perdidas devido ao trading manual e à ausência de sistemas automatizados de monitoramento. Usaremos um dos pares mais negociados como exemplo para estruturar e desenvolver nossa solução de forma eficaz.
Implementação do algoritmo criptográfico SHA-256 do zero em MQL5
Criar integrações com bolsas de criptomoedas sem arquivos DLL foi, por muito tempo, uma tarefa complexa, mas esta solução fornece uma base completa para conexão direta ao mercado.
Gerenciamento de riscos (Parte 3): Criação da classe principal de gerenciamento de riscos
Neste artigo começaremos a criação da classe principal de gerenciamento de riscos, que será o elemento chave para o controle de riscos no sistema. Vamos nos concentrar na construção das bases, na definição das principais estruturas, variáveis e funções. Além disso, implementaremos os métodos necessários para atribuir valores de lucro máximo e prejuízo máximo, estabelecendo assim o alicerce do gerenciamento de riscos.
Do básico ao intermediário: Filas, Listas e Árvores (VIII)
Neste artigo veremos como implementar um algoritmo de balanceamento da árvore. O que será visto aqui, é a minha proposta para este tipo de mecanismo. Existem diversos outros mecanismos com o mesmo tipo de objetivo. Porém cada um tem seus problemas e suas vantagens. Depende de você, meu caro leitor, estudar e procurar encontrar o que melhor irá lhe atender.
Desenvolvendo um EA multimoeda (Parte 26): Informador para instrumentos de negociação
Antes de avançarmos ainda mais no desenvolvimento de EAs multimoeda, vamos tentar mudar o foco para a criação de um novo projeto que utilize a biblioteca já desenvolvida. Com esse exemplo, identificaremos como é melhor organizar o armazenamento do código-fonte e como o novo repositório de código da MetaQuotes pode nos ajudar.
Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)
O framework Actor–Director–Critic representa uma evolução da arquitetura clássica de aprendizado por agentes. O artigo apresenta uma experiência prática de sua implementação e adaptação às condições dos mercados financeiros.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 51): Aprendizado por Reforço com SAC
Soft Actor Critic é um algoritmo de Aprendizado por Reforço que utiliza 3 redes neurais. Uma rede ator e 2 redes críticas. Esses modelos de aprendizado de máquina são combinados em uma parceria mestre-escravo onde as redes críticas são modeladas para melhorar a precisão de previsão da rede ator. Ao mesmo tempo em que introduzimos ONNX nesta série, exploramos como essas ideias podem ser colocadas à prova como um sinal personalizado de um Expert Advisor montado pelo wizard.
Desenvolvimento de um Kit de Ferramentas para Análise da Ação do Preço (Parte 6): Mean Reversion Signal Reaper
Embora alguns conceitos possam parecer simples à primeira vista, trazê-los à prática pode ser bastante desafiador. No artigo abaixo, levaremos você a uma jornada pela nossa abordagem inovadora para automatizar um Expert Advisor (EA) que analisa o mercado de forma eficiente utilizando uma estratégia de reversão à média. Junte-se a nós enquanto desvendamos as complexidades desse empolgante processo de automação.
Integrando MQL5 com pacotes de processamento de dados (Parte 4): Manipulação de Big Data
Explorando técnicas avançadas para integrar o MQL5 com ferramentas poderosas de processamento de dados, esta parte se concentra no tratamento eficiente de big data para aprimorar a análise de negociação e a tomada de decisões.