Criando um Expert Advisor Integrado com MQL5-Telegram (Parte 3): Enviando Capturas de Tela de Gráficos com Legendas de MQL5 para o Telegram
Neste artigo, criamos um Expert Advisor em MQL5 que codifica capturas de tela de gráficos como dados de imagem e os envia para um chat do Telegram via requisições HTTP. Ao integrar a codificação e transmissão de fotos, aprimoramos o sistema MQL5-Telegram existente com insights visuais de trading diretamente no Telegram.
Redes neurais em trading: Aprendizado contextual com memória (MacroHFT)
Apresento o framework MacroHFT, que aplica aprendizado por reforço contextual com memória para melhorar as decisões em trading de alta frequência de criptomoedas, utilizando dados macroeconômicos e agentes adaptativos.
Desenvolvendo um sistema de Replay (Parte 72): Uma comunicação inusitada (I)
O que iremos construir será complexo de entender. Por isso, apresentarei apenas o início da construção neste artigo. Leia com calma, pois entender o conteúdo aqui é essencial para o próximo passo. O objetivo deste conteúdo é apenas didático, sem aplicação prática além do aprendizado e estudo dos conceitos apresentados.
Exemplo de Otimização Estocástica e Controle Ótimo
Este Expert Advisor, chamado SMOC (provavelmente abreviação de Stochastic Model Optimal Control), é um exemplo simples de um sistema de negociação algorítmica avançado para o MetaTrader 5. Ele utiliza uma combinação de indicadores técnicos, controle preditivo baseado em modelos e gerenciamento dinâmico de risco para tomar decisões de negociação. O EA incorpora parâmetros adaptativos, dimensionamento de posição baseado em volatilidade e análise de tendências para otimizar seu desempenho em diferentes condições de mercado.
Informações detalhadas sobre trading baseado em volume: Indo além dos gráficos OHLC
Um sistema de trading algorítmico que combina análise de volume com métodos de machine learning, em especial com redes neurais LSTM. Diferente das abordagens tradicionais de trading, que se concentram principalmente no movimento dos preços, este sistema enfatiza os padrões de volume e suas derivadas para prever os movimentos do mercado. A metodologia inclui três componentes principais: análise das derivadas do volume (primeira e segunda derivada), previsões LSTM para padrões de volume e indicadores técnicos tradicionais.
Teoria das Categorias em MQL5 (Parte 4): Intervalos, experimentos e composições
A teoria das categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta série de artigos tem como objetivo descrever alguns de seus conceitos a fim de criar uma biblioteca aberta e utilizar ainda mais essa seção notável na criação de estratégias de negociação.
Simulação de mercado: Iniciando o SQL no MQL5 (III)
No artigo anterior vimos como poderíamos desenvolver uma classe em MQL5, que seria capaz de nos dar algum suporte. Cuja finalidade, se dá justamente para que possamos colocar o código SQL dentro de um arquivo de script. Isto de forma que não precisaríamos, ter que digitar o mesmo código em uma string, no código MQL5. Mas apesar de daquela solução, ser funcional. Ela contem alguns detalhes, que podemos melhorar e devemos melhorar.
Integrando o MQL5 com pacotes de processamento de dados (Parte 2): Aprendizado de Máquina e Análise Preditiva
Na nossa série sobre integração do MQL5 com pacotes de processamento de dados, mergulhamos na poderosa combinação de aprendizado de máquina e análise preditiva. Exploraremos como conectar o MQL5 de forma perfeita com bibliotecas populares de aprendizado de máquina, para possibilitar modelos preditivos sofisticados para os mercados financeiros.
Do básico ao intermediário: Struct (II)
Neste artigo iremos entender por que estrutura foram criadas em linguagens de programação como o MQL5. Assim como também por que alguns momentos, estruturas formas ideais de transferir valores entre funções e procedimentos. Enquanto em outros momentos, elas podem não ser a melhor forma de se fazer isto.
Do básico ao intermediário: Objetos (II)
Neste artigo veremos como controlar de forma simples via código algumas propriedades de objetos. Vermos como podemos colocar mais de um objeto em um mesmo gráfico, usando para isto uma aplicação. E além disto, começaremos a ver a importância de definir um nome curto, para todo e qualquer indicador que venhamos a implementar.
Negociando com o Calendário Econômico do MQL5 (Parte 1): Dominando as Funções do Calendário Econômico do MQL5
Neste artigo, exploramos como usar o Calendário Econômico do MQL5 para negociar, primeiro entendendo suas funcionalidades principais. Em seguida, implementamos funções-chave do Calendário Econômico no MQL5 para extrair dados relevantes de notícias para decisões de negociação. Por fim, concluímos mostrando como utilizar essas informações para aprimorar as estratégias de negociação de forma eficaz.
Redes neurais em trading: Transformer eficiente em parâmetros com atenção segmentada (Conclusão)
No artigo anterior, abordamos os aspectos teóricos do framework PSformer, que incorpora duas inovações principais na arquitetura clássica do Transformer: o mecanismo de compartilhamento de parâmetros (Parameter Shared — PS) e a atenção a segmentos espaço-temporais (SegAtt). Neste artigo, damos continuidade à implementação dessas abordagens usando os recursos do MQL5.
Do básico ao intermediário: Template e Typename (III)
Neste artigo iremos ver a primeira parte de algo que para iniciantes é muito confuso de entender. Mas para que fique devidamente explicado e assim o tema não se torne confuso, além do necessário. Irei dividir a coisa em etapas. A primeira etapa é a que estará sendo mostrada neste artigo. No entanto, apesar de no final parecer que ficamos em um beco sem saída. Não será bem isto que estará ocorrendo. Já que o próximo passo nos levará a uma outra situação em que será melhor entendida no próximo artigo.
Fibonacci no Forex (Parte I): Testando relações entre preço e tempo
Como o mercado se movimenta com base em proporções derivadas dos números de Fibonacci? Essa sequência, em que cada número é a soma dos dois anteriores (1, 1, 2, 3, 5, 8, 13, 21...), não descreve apenas o crescimento da população de coelhos. Vamos considerar a hipótese de Pitágoras de que tudo no mundo obedece a certas proporções numéricas...
Desenvolvendo um sistema de Replay (Parte 64): Dando play no serviço (V)
Neste artigo irei mostrar como corrigir duas falhas que se encontram presentes no código. No entanto tais correções foram explicadas para que você, aspirante a programador, consiga entender que nem sempre as coisas irão acontecer como você havia previsto. Mas isto não é motivo para desespero e sim uma oportunidade de aprendizado. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Análise de Sentimento no Twitter com Sockets
Este inovador bot de negociação integra o MetaTrader 5 com Python para aproveitar a análise de sentimento em tempo real nas mídias sociais para decisões automatizadas de negociação. Ao analisar o sentimento no Twitter relacionado a instrumentos financeiros específicos, o bot traduz as tendências das mídias sociais em sinais acionáveis de negociação. Ele utiliza uma arquitetura cliente-servidor com comunicação via socket, permitindo uma interação contínua entre as capacidades de negociação do MT5 e o poder de processamento de dados do Python.
Criando um Painel Administrativo de Negociação em MQL5 (Parte III): Aprimorando a Interface com Estilo Visual (I)
Neste artigo, focaremos no estilo visual da interface gráfica do usuário (GUI) do nosso Painel Administrativo de Negociação usando MQL5. Exploraremos várias técnicas e recursos disponíveis no MQL5 que permitem a personalização e otimização da interface, garantindo que ela atenda às necessidades dos traders enquanto mantém uma estética atraente.
Do básico ao intermediário: Recursividade
Este artigo, veremos um conceito de programação muito interessante e bem divertido. Porém que deve ser tratado com extremo respeito. Já que um mal uso, ou mal entendimento do mesmo, torna programas relativamente simples em algo desnecessariamente complicado. Porém o bom uso, e a perfeita adequação em situações igualmente adequadas. Torna a recursividade um grande aliado para resolver questões que de outra forma seria muito mais trabalhoso e demorado. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Redes neurais em trading: Análise de nuvem de pontos (PointNet)
A análise direta da nuvem de pontos permite evitar um aumento excessivo no volume de dados e aprimorar a eficiência dos modelos em tarefas de classificação e segmentação. Abordagens deste tipo demonstram um bom desempenho e resistência a perturbações nos dados brutos.
Ciência de dados e aprendizado de máquina (Parte 32): Como manter a relevância de modelos de IA com treinamento on-line
No mundo em constante transformação do trading, adaptar-se às mudanças do mercado é simplesmente uma necessidade. Todos os dias surgem novos padrões e tendências, o que torna difícil até mesmo para os modelos mais avançados de aprendizado de máquina manterem sua eficácia diante de condições em mutação. Neste artigo, vamos falar sobre como manter os modelos relevantes e capazes de reagir a novos dados de mercado por meio de reeducação automática.
Análise pós-fato da negociação: ajustando TrailingStop e novos stops no testador de estratégias
Seguimos com o tema da análise de negociações realizadas no testador de estratégias para melhorar a qualidade da negociação. Vamos verificar como o uso de diferentes métodos de trailing pode alterar os resultados de negociação já obtidos.
Simulação de mercado (Parte 20): Iniciando o SQL (III)
Apesar de podermos fazer as coisas com um banco de dados, tendo cerca de 10 ou pouco mais registros. A coisa realmente se torna melhor assimilada, quando usamos um arquivo de banco de dados que contenha mais de 15 mil registros. Ou seja, se você for criar isto manualmente irá ser uma bela de uma tarefa. No entanto, dificilmente você irá encontrar algum banco de dados, mesmo para fins didáticos disponível para download. Mas não precisamos de fato recorrer a este tipo de coisa. Podemos usar o MetaTrader 5, para criar um banco de dados para nos. Neste artigo veremos como fazer isto.
Redes neurais em trading: Explorando a estrutura local dos dados
A identificação eficaz e a preservação da estrutura local dos dados de mercado em meio ao ruído são tarefas cruciais no trading. Embora o uso do mecanismo Self-Attention tenha mostrado bons resultados no processamento desses dados, o método clássico não leva em conta as características locais da estrutura original. Neste artigo, proponho conhecer um algoritmo capaz de considerar essas dependências estruturais.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 41): Deep-Q-Networks
O Deep-Q-Network é um algoritmo de aprendizado por reforço que utiliza redes neurais para projetar (estimar) o próximo valor-Q e a ação ideal durante o processo de treinamento de um módulo de aprendizado de máquina. Já consideramos um algoritmo alternativo de aprendizado por reforço, o Q-Learning. Este artigo, portanto, apresenta outro exemplo de como um MLP treinado com aprendizado por reforço pode ser usado dentro de uma classe de sinal personalizada.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert
Clustering Espacial Baseado em Densidade para Aplicações com Ruído é uma forma não supervisionada de agrupar dados que dificilmente requer parâmetros de entrada, exceto por apenas 2, o que, quando comparado a outras abordagens como k-means, é uma vantagem. Vamos explorar como isso pode ser construtivo para testar e, eventualmente, negociar com Expert Advisers montados no Wizard.
Redes neurais de maneira fácil (Parte 94): Otimização da sequência de dados iniciais
Ao trabalhar com séries temporais, geralmente usamos os dados na sequência histórica. Mas isso é realmente o mais eficiente? Há quem acredite que modificar a sequência dos dados iniciais pode aumentar a eficácia dos modelos de aprendizado. Neste artigo, vou apresentar um desses métodos.
Anotação de dados na análise de série temporal (Parte 5): Aplicação e teste de um EA usando Socket
Nesta série de artigos, apresentamos vários métodos de anotação de séries temporais que podem criar dados compatíveis com a maioria dos modelos de inteligência artificial (IA). A anotação precisa dos dados pode tornar o modelo de IA treinado mais alinhado com os objetivos e tarefas dos usuários, aumentar a precisão do modelo e até ajudar a alcançar uma melhoria significativa na qualidade!
Ciência de dados e aprendizado de máquina (Parte 18): Comparando a eficácia do TruncatedSVD e NMF no tratamento de dados complexos de mercado
A decomposição em valores singulares truncada (TruncatedSVD) e a fatoração de matriz não negativa (NMF) são métodos de redução de dimensionalidade. Ambos podem ser bastante úteis ao trabalhar com estratégias de negociação baseadas na análise de dados. Neste artigo, analisamos a aplicabilidade desses métodos no processamento de dados complexos de mercado, incluindo suas capacidades de redução de dimensionalidade para otimizar a análise quantitativa nos mercados financeiros.
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 8): Desenvolvimento de Expert Advisor (I)
Nesta discussão, vamos criar nosso primeiro Expert Advisor em MQL5 com base no indicador que fizemos no artigo anterior. Vamos cobrir todas as funcionalidades necessárias para tornar o processo automático, incluindo o gerenciamento de riscos. Isso beneficiará extensivamente os usuários ao avançarem da execução manual de negociações para sistemas automatizados.
Desenvolvendo um EA multimoeda (Parte 16): Influência de diferentes históricos de cotações nos resultados de testes
O EA em desenvolvimento deve apresentar bons resultados ao operar com diferentes corretoras. Porém, até agora, os testes foram realizados com base em cotações de uma conta de demonstração da MetaQuotes. Vamos verificar se o EA está pronto para operar em contas reais com cotações diferentes das utilizadas durante os testes e otimizações.
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 30): Normalização em Lote no Aprendizado de Máquina
A normalização em lote é um pré-processamento dos dados antes de sua entrada em um algoritmo de aprendizado de máquina, como uma rede neural. Ao aplicá-la, é essencial levar em conta o tipo de ativação que será usado pelo algoritmo. Exploraremos diferentes abordagens para extrair vantagens com um EA construído no Assistente.
Criando um painel de administração de trading em MQL5 (Parte VII): Usuário confiável, recuperação e criptografia
Alertas de segurança, como aqueles que aparecem sempre que o gráfico é atualizado, uma nova par é adicionada ao chat do painel administrativo do EA ou o terminal é reiniciado, podem se tornar cansativos. Nesta discussão, vamos analisar e implementar uma função que rastreia o número de tentativas de login para identificar um usuário confiável. Após um determinado número de tentativas malsucedidas, o aplicativo passará para um procedimento avançado de login, que também facilita a recuperação de senha para usuários que possam tê-la esquecido. Além disso, veremos como é possível integrar de forma eficiente a criptografia no painel administrativo para aumentar a segurança.
Neurônio biológico para previsão de séries temporais financeiras
Estamos construindo um sistema de neurônios biologicamente fiel para prever séries temporais. A introdução de um meio semelhante ao plasma na arquitetura da rede neural criou uma espécie de "inteligência coletiva", onde cada neurônio influencia o funcionamento do sistema não apenas por meio de conexões diretas, mas também por meio de interações eletromagnéticas de longo alcance. Como esse sistema neural modelando o cérebro irá se comportar no mercado?
Como integrar o conceito de Smart Money (OB) em combinação com o indicador Fibonacci para entrada ideal na operação
As SMC (Order Block) são áreas-chave em que os traders institucionais realizam compras ou vendas significativas. Após uma movimentação considerável de preço, os níveis de Fibonacci ajudam a identificar um possível recuo desde o máximo recente de oscilação (swing high) até o mínimo de oscilação (swing low), de modo a determinar o ponto de entrada ideal na operação.
Critério de homogeneidade de Smirnov como indicador de não-estacionaridade de séries temporais
Este artigo analisa um dos mais conhecidos critérios de homogeneidade não-paramétricos, o critério de Smirnov. São analisados tanto dados modelados quanto cotações reais. É apresentado um exemplo de construção do indicador de não-estacionaridade (iSmirnovDistance).
Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5
Neste artigo, investigamos como o Exponente de Hurst Generalizado e o Teste de Razão de Variância podem ser utilizados para analisar o comportamento das séries de preços em MQL5.
Simulação de mercado (Parte 17): Sockets (XI)
Implementar a parte que será executada aqui no MetaTrader 5, está longe de ser complicado. Mas existem diversos cuidados e pontos de atenção a serem observados. Isto para que você caro leitor, consiga de fato fazer com que o sistema funcione. Lembre-se de uma coisa: Você não executará um único programa. Você estará na verdade, executando três programas ao mesmo tempo. E é importante que cada um seja implementado e construído de forma que trabalhem e conversem entre si. Isto sem que eles fiquem completamente sem saber o que cada um está querendo ou desejando fazer.
Desenvolvendo um cliente MQTT para Metatrader 5: uma abordagem TDD — Parte 6
Este artigo é a sexta parte de uma série que descreve nossas etapas de desenvolvimento de um cliente MQL5 nativo para o protocolo MQTT 5.0. Nesta parte, comentamos as principais mudanças em nosso primeiro refatoramento, como chegamos a um modelo viável para nossas classes de construção de pacotes, como estamos construindo pacotes PUBLISH e PUBACK, e a semântica por trás dos Códigos de Motivo PUBACK.
Reimaginando Estratégias Clássicas (Parte IV): SP500 e Notas do Tesouro dos EUA
Nesta série de artigos, analisamos estratégias clássicas de negociação usando algoritmos modernos para determinar se podemos melhorar a estratégia utilizando IA. No artigo de hoje, revisamos uma abordagem clássica para negociar o SP500 usando a relação que ele tem com as Notas do Tesouro dos EUA.
Recursos do Assistente MQL5 que você precisa conhecer (Parte 40): Parabolic SAR
O Parabolic Stop-and-Reversal (SAR) é um indicador de pontos de confirmação e término de tendência. Como ele detecta tendências com atraso, sua principal função era posicionar ordens stop-loss móveis para posições abertas. Vamos analisar se é possível utilizá-lo como sinal de EA com a ajuda de classes de sinais personalizadas para EAs, montadas usando o Assistente.