Artigos sobre programação nas linguagens MQL4 e MQL5

icon

Leia os artigos publicados aqui para aprender MQL5, a linguagem das estratégias de negociação. A maioria desses artigos foi escrita por vocês, membros da MQL5.community. Todos eles estão divididos em categorias para encontrar respostas rápidas relacionadas a aspectos específicos da programação: "Integração", "Testador", "Estratégias de negociação" e muito mais.

Acompanhe as novas publicações e participe de suas discussões no Fórum!

Novo artigo
recentes | melhores
preview
Escrevemos o primeiro modelo de caixa de vidro (Glass Box) em Python e MQL5

Escrevemos o primeiro modelo de caixa de vidro (Glass Box) em Python e MQL5

Os modelos de aprendizado de máquina são difíceis de interpretar, e entender o motivo pelo qual os modelos não atendem às nossas expectativas pode ajudar muito a alcançar o resultado desejado ao usar esses métodos modernos. Sem um entendimento abrangente do funcionamento interno do modelo, pode ser difícil identificar erros que prejudicam o desempenho. Nesse processo, podemos dedicar tempo a criar funções que não impactam na qualidade da previsão. No final, por melhor que seja o modelo, perdemos todos os seus principais benefícios devido a nossos próprios erros. Felizmente, existe uma solução complexa, mas bem desenvolvida, que permite ver claramente o que está acontecendo sob o capô do modelo.
preview
Do básico ao intermediário: Comando WHILE e DO WHILE

Do básico ao intermediário: Comando WHILE e DO WHILE

Neste artigo, vermos de maneira prática e bastante didática o primeiro comando de laço. Apesar de muitos iniciantes temerem nas bases quando precisa criar laços. Saber como fazer isto de maneira adequada e segura. É algo que somente a experiência e prática irá lhe fornecer. Mas quem sabe, eu possa lhe ajudar a reduzir as dores e sofrimento. Isto lhe mostrando os principais problemas e cuidados a serem tomados quando for utilizar laços em seus códigos. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Expert Advisor Autônomo com MQL5 e Python (Parte III): Decifrando o Algoritmo do Boom 1000

Expert Advisor Autônomo com MQL5 e Python (Parte III): Decifrando o Algoritmo do Boom 1000

Nesta série de artigos, discutimos como podemos construir Expert Advisors capazes de se ajustarem autonomamente às condições dinâmicas do mercado. No artigo de hoje, tentaremos ajustar uma rede neural profunda aos mercados sintéticos da Deriv.
preview
Como criar um diário de negociações com MetaTrader e Google Sheets

Como criar um diário de negociações com MetaTrader e Google Sheets

Crie um diário de negociações usando o MetaTrader e o Google Sheets! Você aprenderá como sincronizar seus dados de negociação via HTTP POST e recuperá-los usando requisições HTTP. Ao final, você terá um diário de negociações que ajudará a acompanhar suas operações de forma eficaz e eficiente.
preview
DoEasy. Controles (Parte 33): "ScrollBar" vertical

DoEasy. Controles (Parte 33): "ScrollBar" vertical

No artigo, continuaremos a desenvolver elementos gráficos da biblioteca DoEasy e incluir a rolagem vertical para os controles do objeto-forma. Também vamos adicionar algumas funções e métodos úteis que serão necessários no futuro.
preview
Desenvolvendo um cliente MQTT para MetaTrader 5: uma abordagem TDD — Final

Desenvolvendo um cliente MQTT para MetaTrader 5: uma abordagem TDD — Final

Este artigo é a última parte de uma série que descreve nossas etapas de desenvolvimento de um cliente MQL5 nativo para o protocolo MQTT 5.0. Embora a biblioteca ainda não esteja pronta para produção, nesta parte, usaremos nosso cliente para atualizar um símbolo personalizado com ticks (ou taxas) obtidos de outro corretor. Por favor, veja o final deste artigo para mais informações sobre o status atual da biblioteca, o que falta para que ela esteja totalmente em conformidade com o protocolo MQTT 5.0, um possível roadmap, e como acompanhar e contribuir para seu desenvolvimento.
preview
Superando Desafios de Integração com ONNX

Superando Desafios de Integração com ONNX

ONNX é uma ótima ferramenta para integrar códigos complexos de IA entre diferentes plataformas, sendo uma ferramenta excelente, mas que vem com alguns desafios que devem ser superados para aproveitar ao máximo suas capacidades. Neste artigo, discutimos os problemas mais comuns que você pode enfrentar e como mitigá-los.
preview
Simulação de mercado (Parte 15): Sockets (IX)

Simulação de mercado (Parte 15): Sockets (IX)

Neste artigo daqui, explicarei uma das soluções possíveis para o que venho tentando mostrar. Ou seja, como permitir que um usuário no Excel, consiga fazer algo no MetaTrader 5. Isto sem que ele de fato, envie ordens, abra ou feche uma posição usando o MetaTrader 5. A ideia, é que o usuário faça uso do Excel a fim de ter um estudo fundamentalista de algum ativo. E fazendo uso, apenas e somente do Excel, ele consiga dizer a um Expert Advisor, que esteja executando no MetaTrader 5, que é para abrir ou fechar uma dada posição.
preview
Rede neural na prática: Pseudo Inversa (II)

Rede neural na prática: Pseudo Inversa (II)

Por conta do fato, de que estes artigos visam a didática. E não para mostrar como implementar esta ou aquela funcionalidade. Vamos fazer algo um pouco diferente aqui. Em vez de mostrar como implementar a fatoração para conseguir a inversa de uma matriz. Vamos focar em como fatorar a pseudo inversa. O motivo é que não faz sentido, mostrar como fatorar algo de forma genérica. Se podemos fazer a mesma coisa de forma especializada. E melhor, será algo que você, conseguirá entender muito mais do por que as coisas serem como são. Então vamos ver por que um hardware aparece depois de um tempo, em substituição a um software.
preview
Tipo de desenho DRAW_ARROW em indicadores multissímbolos e multiperíodos

Tipo de desenho DRAW_ARROW em indicadores multissímbolos e multiperíodos

No artigo, vamos considerar o desenho de indicadores multissímbolos e multiperíodos com setas. Aprimoraremos os métodos da classe para a correta exibição das setas, que exibem dados dos indicadores de seta calculados em símbolo/período diferentes do símbolo/período do gráfico atual.
preview
Modelo GRU de Deep Learning com Python para ONNX com EA, e comparação entre modelos GRU e LSTM

Modelo GRU de Deep Learning com Python para ONNX com EA, e comparação entre modelos GRU e LSTM

Vamos guiá-lo por todo o processo de DL com Python para criar um modelo GRU em ONNX, culminando na criação de um Expert Advisor (EA) projetado para negociação, e, posteriormente, comparando o modelo GRU com o modelo LSTM.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton

Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton

Máquinas de Vetores de Suporte classificam dados com base em classes predefinidas, explorando os efeitos de aumentar sua dimensionalidade. É um método de aprendizado supervisionado que é bastante complexo, dado seu potencial para lidar com dados multidimensionais. Neste artigo, consideramos como uma implementação muito básica de dados bidimensionais pode ser feita de maneira mais eficiente com o Polinômio de Newton ao classificar a ação do preço.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 26): Médias Móveis e o Exponente de Hurst

Técnicas do MQL5 Wizard que você deve conhecer (Parte 26): Médias Móveis e o Exponente de Hurst

O Exponente de Hurst é uma medida de quanto uma série temporal se autocorrela ao longo do tempo. Entende-se que ele captura as propriedades de longo prazo de uma série temporal e, portanto, tem um peso significativo na análise de séries temporais, mesmo fora do contexto econômico/financeiro. No entanto, focamos em seu potencial benefício para os traders ao analisar como essa métrica poderia ser combinada com médias móveis para construir um sinal potencialmente robusto.
preview
Ciência de dados e aprendizado de máquina (Parte 28): Previsão de múltiplos valores futuros para EURUSD

Ciência de dados e aprendizado de máquina (Parte 28): Previsão de múltiplos valores futuros para EURUSD

Muitos modelos de inteligência artificial são projetados para prever um único valor futuro. Neste artigo, veremos como utilizar modelos de aprendizado de máquina para prever múltiplos valores futuros. Essa abordagem, chamada de previsão multietapa, permite não apenas prever o preço de fechamento de amanhã, mas também o de depois de amanhã e assim por diante. A previsão multietapa oferece uma vantagem inegável para traders e analistas de dados, pois amplia o espectro de informações para oportunidades de planejamento estratégico.
preview
Instalação do MetaTrader 5 e de outros aplicativos da MetaQuotes no HarmonyOS NEXT

Instalação do MetaTrader 5 e de outros aplicativos da MetaQuotes no HarmonyOS NEXT

Os aplicativos da MetaQuotes, incluindo as plataformas MetaTrader 5 e MetaTrader 4, podem ser instalados em dispositivos com o sistema operacional HarmonyOS NEXT usando o componente DroiTong. Este artigo apresenta um guia passo a passo para instalar os programas em seu telefone ou notebook.
preview
Reimaginando Estratégias Clássicas: Petróleo Bruto

Reimaginando Estratégias Clássicas: Petróleo Bruto

Neste artigo, revisitamos uma estratégia clássica de negociação de petróleo bruto com o objetivo de aprimorá-la, utilizando algoritmos de aprendizado de máquina supervisionado. Vamos construir um modelo de mínimos quadrados para prever os preços futuros do petróleo Brent, com base na diferença entre os preços do Brent e do WTI. Nosso objetivo é identificar um indicador líder de futuras mudanças nos preços do Brent.
preview
Do básico ao intermediário: Definições (I)

Do básico ao intermediário: Definições (I)

Neste artigo, faremos diversas coisas, que para muitos irão parecer estranho e totalmente fora de contexto. Mas que ser for bem empregado tornará seu aprendo muito mais divertido e empolgante. Já que podemos construir coisas bem interessantes, com base no que será visto aqui. A ponto de permitir uma melhor assimilação da sintaxe da linguagem MQL5. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Data Science e ML (Parte 30): O Casal Poderoso para Prever o Mercado de Ações, Redes Neurais Convolucionais (CNNs) e Redes Neurais Recorrentes (RNNs)

Data Science e ML (Parte 30): O Casal Poderoso para Prever o Mercado de Ações, Redes Neurais Convolucionais (CNNs) e Redes Neurais Recorrentes (RNNs)

Neste artigo, exploramos a integração dinâmica das Redes Neurais Convolucionais (CNNs) e das Redes Neurais Recorrentes (RNNs) na previsão do mercado de ações. Aproveitando a capacidade das CNNs de extrair padrões e a proficiência das RNNs em lidar com dados sequenciais. Vamos ver como essa combinação poderosa pode aumentar a precisão e eficiência dos algoritmos de negociação.
preview
Análise volumétrica com redes neurais como chave para tendências futuras

Análise volumétrica com redes neurais como chave para tendências futuras

O artigo explora a possibilidade de melhorar a previsão de preços com base na análise do volume de negociações, integrando os princípios da análise técnica com a arquitetura de redes neurais LSTM. Dá-se atenção especial à identificação e interpretação de volumes anômalos, uso de clusterização e criação de características baseadas em volume, além de sua definição no contexto de aprendizado de máquina.
preview
Redes neurais em trading: Modelos híbridos de sequências de grafos (GSM++)

Redes neurais em trading: Modelos híbridos de sequências de grafos (GSM++)

Os modelos híbridos de sequências de grafos (GSM++) unem os pontos fortes de diferentes arquiteturas, garantindo alta precisão na análise de dados e otimização do custo computacional. Esses modelos se adaptam de forma eficiente a dados de mercado dinâmicos, melhorando a representação e o processamento das informações financeiras.
preview
Rede neural na prática: A prática leva a perfeição

Rede neural na prática: A prática leva a perfeição

Neste artigo mostrarei como, uma simples mudança no código, a fim de tornar o neurônio um pouco mais especializado. Pode tornar a fase de treinamento consideravelmente mais rápida. Visto que uma vez que o neurônio, ou rede neural, como será visto mais para frente. Já estiver sido treinada. O trabalho executado por ela, será feito de maneira muito mais rápida. Também falarei de um problema que existe, do qual poucos mencionam.
preview
Redes neurais de maneira fácil (Parte 66): Problemáticas da pesquisa em treinamento off-line

Redes neurais de maneira fácil (Parte 66): Problemáticas da pesquisa em treinamento off-line

O treinamento de modelos em modo off-line é realizado com dados de uma amostra de treinamento previamente preparada. Isso nos oferece várias vantagens, mas também comprime significativamente as informações sobre o ambiente em relação às dimensões da amostra de treinamento. Isso, por sua vez, limita as possibilidades de pesquisa. Neste artigo, quero apresentar um método que permite enriquecer a amostra de treinamento com dados o mais diversificados possível.
preview
Reimaginando Estratégias Clássicas (Parte II): Rompimentos das Bandas de Bollinger

Reimaginando Estratégias Clássicas (Parte II): Rompimentos das Bandas de Bollinger

Este artigo explora uma estratégia de trading que integra a Análise Discriminante Linear (LDA) com Bandas de Bollinger, aproveitando previsões de zonas categóricas para gerar sinais estratégicos de entrada no mercado.
preview
Ciclos e trading

Ciclos e trading

Este artigo é dedicado ao uso de ciclos no trading. Nele, vamos tentar entender como construir uma estratégia de negociação com base em modelos cíclicos.
preview
Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos

Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos

Neste artigo, exploramos o algoritmo Artificial Bee Hive Algorithm (ABHA), desenvolvido em 2009. Voltado para a solução de problemas de otimização contínua, o algoritmo é utilizado para encontrar o melhor caminho entre dois pontos. Analisaremos como o ABHA se inspira no comportamento das colônias de abelhas, no qual cada abelha desempenha um papel único que contribui para uma busca mais eficiente por recursos.
preview
Algoritmo de algas artificiais (AAA)

Algoritmo de algas artificiais (AAA)

Este artigo aborda o algoritmo de algas artificiais (AAA), desenvolvido com base nos processos biológicos característicos das microalgas. Ele incorpora movimento espiral, processo evolutivo e adaptação, e possibilita a resolução de problemas de otimização. O artigo oferece uma análise detalhada dos princípios de funcionamento do AAA e seu potencial na modelagem matemática, destacando a conexão entre a natureza e as soluções algorítmicas.
preview
Estratégia de trading "Captura de Liquidez" (Liquidity Grab)

Estratégia de trading "Captura de Liquidez" (Liquidity Grab)

A estratégia de captura de liquidez é um componente-chave do Smart Money Concepts (SMC), que visa identificar e aproveitar as ações dos participantes institucionais no mercado. Ela envolve mirar áreas de alta liquidez, como zonas de suporte ou resistência, onde ordens de grande volume podem provocar um movimento de preço antes que o mercado retome sua tendência. Este artigo explica em detalhes o conceito de captura de liquidez e descreve o processo de desenvolvimento de um EA para a estratégia de captura de liquidez em MQL5.
preview
Redes neurais de maneira fácil (Parte 79): consultas agregadas de características (FAQ)

Redes neurais de maneira fácil (Parte 79): consultas agregadas de características (FAQ)

No artigo anterior, nos familiarizamos com um dos métodos de detecção de objetos em imagens. No entanto, o processamento de imagens estáticas é um pouco diferente do trabalho com séries temporais dinâmicas, como aquelas relacionadas à dinâmica dos preços que estamos analisando. Neste artigo, quero apresentar a você o método de detecção de objetos em vídeo, que é mais relevante para a nossa tarefa atual.
preview
Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

A Fusão Espaço-Temporal, que utiliza métricas de 'espaço' e tempo na modelagem de dados, é principalmente útil em sensoriamento remoto e uma série de outras atividades baseadas em imagens, permitindo uma melhor compreensão do nosso ambiente. Graças a um artigo publicado, adotamos uma abordagem inovadora ao usá-la, examinando seu potencial para traders.
preview
Desenvolvendo um EA multimoeda (Parte 17): Preparação adicional para o trading real

Desenvolvendo um EA multimoeda (Parte 17): Preparação adicional para o trading real

Atualmente, nosso EA utiliza um banco de dados para obter as strings de inicialização de instâncias individuais de estratégias de trading. No entanto, o banco de dados é bastante volumoso e contém muitas informações desnecessárias para a operação real do EA. Tentaremos garantir o funcionamento do EA sem a necessidade de conexão obrigatória ao banco de dados.
preview
Indicador de previsão de volatilidade usando Python

Indicador de previsão de volatilidade usando Python

Vamos prever a volatilidade extrema futura com ajuda da classificação binária. Criamos um indicador de previsão de volatilidade extrema com uso de aprendizado de máquina.
preview
DoEasy. Controles (Parte 15): Objeto WinForms TabControl - múltiplas fileiras de cabeçalhos de guias, métodos de manuseio de guias

DoEasy. Controles (Parte 15): Objeto WinForms TabControl - múltiplas fileiras de cabeçalhos de guias, métodos de manuseio de guias

Neste artigo, continuaremos trabalhando no objeto WinForm TabControl, e para tal criaremos a classe do objeto-campo de guia, tornaremos possível colocar cabeçalhos de guias em várias linhas e adicionaremos métodos para trabalhar com as guias do objeto.
preview
Redes neurais de maneira fácil (Parte 40): Abordagens para usar Go-Explore em uma grande quantidade de dados

Redes neurais de maneira fácil (Parte 40): Abordagens para usar Go-Explore em uma grande quantidade de dados

Neste artigo, discutiremos a aplicação do algoritmo Go-Explore ao longo de um período de treinamento prolongado, uma vez que uma estratégia de seleção aleatória de ações pode não levar a uma passagem lucrativa à medida que o tempo de treinamento aumenta.
preview
Negociação de Notícias Facilitada (Parte 3): Realizando Negócios

Negociação de Notícias Facilitada (Parte 3): Realizando Negócios

Neste artigo, nosso especialista em negociação de notícias começará a abrir negociações com base no calendário econômico armazenado em nosso banco de dados. Além disso, melhoraremos os gráficos do especialista para exibir informações mais relevantes sobre os próximos eventos do calendário econômico.
preview
Desenvolvendo um sistema de Replay (Parte 57): Dissecando o serviço de testagem

Desenvolvendo um sistema de Replay (Parte 57): Dissecando o serviço de testagem

Neste artigo iremos dissecar o serviço de teste que foi visto no artigo anterior. Mas por conta que lá já havia muita informação, e não queria complicar a coisa toda com mais informações. Vamos fazer isto neste artigo daqui. Então se você não tem ideia de como o serviço que foi visto no artigo anterior, permitia que as coisas funcionassem daquela forma. Venha comigo neste artigo para compreender o que será base para os próximos artigos.
preview
Quantificação no aprendizado de máquina (Parte 1): Teoria, exemplo de código, análise da implementação no CatBoost

Quantificação no aprendizado de máquina (Parte 1): Teoria, exemplo de código, análise da implementação no CatBoost

Neste artigo, discutiremos a aplicação teórica da quantização ao construir modelos baseados em árvores. São examinados os métodos de quantização implementados no CatBoost. O material será apresentado em linguagem acessível, sem fórmulas matemáticas complexas.
preview
Do básico ao intermediário: Estruturas (VI)

Do básico ao intermediário: Estruturas (VI)

Neste artigo veremos como podemos começar a implementar o que seria uma base de código estrutural genérico. Isto a fim de reduzir nosso trabalho em programar as coisas e fazer um melhor uso dos potenciais oferecidos pela própria linguagem de programação. No caso o MQL5.
preview
Engenharia de Recursos com Python e MQL5 (Parte II): Ângulo de Preço

Engenharia de Recursos com Python e MQL5 (Parte II): Ângulo de Preço

Existem muitas postagens no Fórum MQL5 pedindo ajuda para calcular a inclinação das mudanças de preço. Este artigo demonstrará uma forma possível de calcular o ângulo formado pelas variações de preço em qualquer mercado que você deseje negociar. Além disso, responderemos se desenvolver esse novo recurso vale o esforço e o tempo adicionais investidos. Vamos explorar se a inclinação do preço pode melhorar a precisão de algum dos nossos modelos de IA ao prever o par USDZAR no M1.
preview
Desenvolvendo um sistema de Replay (Parte 53): Complicando as coisas (V)

Desenvolvendo um sistema de Replay (Parte 53): Complicando as coisas (V)

Neste artigo irei introduzir um tema muito importante, porém que poucos de fato compreender. Eventos Customizados. Perigos. Vantagens e falhas causados por tais coisas. Este assunto é muito importante para quem deseja se tornar um programador profissional em MQL5, ou em qualquer outro tipo de linguagem. Mas aqui iremos focar no MQL5 e no MetaTrader 5.
preview
Redes neurais de maneira fácil (Parte 63): pré-treinamento do transformador de decisões não supervisionado (PDT)

Redes neurais de maneira fácil (Parte 63): pré-treinamento do transformador de decisões não supervisionado (PDT)

Continuamos nossa análise, desta vez, explorando a família de transformadores de decisão. Em trabalhos anteriores, já observamos que o treinamento do transformador subjacente à arquitetura desses métodos é bastante desafiador e requer uma grande quantidade de dados de treinamento rotulados. Neste artigo, consideramos um algoritmo para usar trajetórias não rotuladas com o objetivo de pré-treinar modelos.