Artigos sobre programação nas linguagens MQL4 e MQL5

icon

Leia os artigos publicados aqui para aprender MQL5, a linguagem das estratégias de negociação. A maioria desses artigos foi escrita por vocês, membros da MQL5.community. Todos eles estão divididos em categorias para encontrar respostas rápidas relacionadas a aspectos específicos da programação: "Integração", "Testador", "Estratégias de negociação" e muito mais.

Acompanhe as novas publicações e participe de suas discussões no Fórum!

Novo artigo
recentes | melhores
preview
Reimaginando estratégias clássicas (Parte III): Prevendo máximas mais altas e mínimas mais baixas

Reimaginando estratégias clássicas (Parte III): Prevendo máximas mais altas e mínimas mais baixas

Neste artigo, analisamos empiricamente estratégias de trading clássicas para verificar se é possível aprimorá-las com inteligência artificial (IA). Utilizaremos o modelo de Análise Discriminante Linear (Linear Discriminant Analysis) para tentar prever máximas mais altas e mínimas mais baixas.
preview
Simulação de mercado (Parte 10): Sockets (IV)

Simulação de mercado (Parte 10): Sockets (IV)

Aqui neste artigo mostrei o que você precisa fazer para começar a usar o Excel para controlar o MetaTrader 5. Mas faremos isto de uma forma bastante interessante. Para fazer isto iremos usar um Add-in no Excel. Isto para não precisar de fato fazer uso do VBA presente no Excel. Se você não sabe de que Add-in estou falando. Veja este artigo e aprenda como fazer para programar em Python diretamente dentro do Excel.
preview
Anotação de dados na análise de série temporal (Parte 6): Aplicação e teste de EA com ONNX

Anotação de dados na análise de série temporal (Parte 6): Aplicação e teste de EA com ONNX

Nesta série de artigos, apresentamos vários métodos de anotação de séries temporais, que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A anotação de dados direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, aumentar a precisão do modelo e até ajudar o modelo a alcançar um salto qualitativo!
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 22): GANs Condicionais

Técnicas do MQL5 Wizard que você deve conhecer (Parte 22): GANs Condicionais

Redes Generativas Adversariais são uma combinação de Redes Neurais que treinam entre si para obter resultados mais precisos. Adotamos o tipo condicional dessas redes ao buscarmos uma possível aplicação na previsão de séries temporais financeiras dentro de uma Classe de Sinais de Expert.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes

Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes

Por padrão, estratégias baseadas em múltiplos timeframes não podem ser testadas em Expert Advisors montados pelo assistente devido à arquitetura de código MQL5 utilizada nas classes de montagem. Exploramos uma possível solução para essa limitação em estratégias que utilizam múltiplos timeframes em um estudo de caso com a média móvel quadrática.
preview
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 30): Normalização em Lote no Aprendizado de Máquina

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 30): Normalização em Lote no Aprendizado de Máquina

A normalização em lote é um pré-processamento dos dados antes de sua entrada em um algoritmo de aprendizado de máquina, como uma rede neural. Ao aplicá-la, é essencial levar em conta o tipo de ativação que será usado pelo algoritmo. Exploraremos diferentes abordagens para extrair vantagens com um EA construído no Assistente.
preview
Redes neurais de maneira fácil (Parte 70): melhorando a política usando operadores de forma fechada (CFPI)

Redes neurais de maneira fácil (Parte 70): melhorando a política usando operadores de forma fechada (CFPI)

Neste artigo, propomos explorar um algoritmo que utiliza operadores de melhoria de política de forma fechada para otimizar as ações do Agente em um ambiente off-line.
preview
Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I

Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I

Neste artigo, vamos realizar um estudo sobre vários métodos aplicados em algoritmos genéticos binários e outros algoritmos populacionais. Vamos examinar os componentes principais do algoritmo, como seleção, crossover e mutação, bem como seu impacto no processo de otimização. Além disso, vamos explorar as formas de representação de informações e seu impacto nos resultados de otimização.
preview
Redes neurais de maneira fácil (Parte 76): explorando diversos modos de interação (Multi-future Transformer)

Redes neurais de maneira fácil (Parte 76): explorando diversos modos de interação (Multi-future Transformer)

Neste artigo, continuamos o tema de previsão do movimento de preços. E convido você a conhecer a arquitetura do Multi-future Transformer. A ideia principal é decompor a distribuição multimodal do futuro em várias distribuições unimodais, permitindo modelar eficientemente diversos modos de interação entre os agentes na cena.
preview
Do básico ao intermediário: Estruturas (VI)

Do básico ao intermediário: Estruturas (VI)

Neste artigo veremos como podemos começar a implementar o que seria uma base de código estrutural genérico. Isto a fim de reduzir nosso trabalho em programar as coisas e fazer um melhor uso dos potenciais oferecidos pela própria linguagem de programação. No caso o MQL5.
preview
Simulação de mercado (Parte 03): Uma questão de performance

Simulação de mercado (Parte 03): Uma questão de performance

Muitas vezes somos obrigados a dar um passo para trás para logo depois dar alguns passos a frente. Neste artigo irei mostrar todas as mudanças que foram necessárias serem feitas para que os indicadores de Mouse e Chart Trade não viessem a ter a sua performance comprometidas. Como bônus irei já apresentar outras mudanças que ocorreram em outros arquivos de cabeçalho, que serão muito usados no futuro.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert

Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert

Clustering Espacial Baseado em Densidade para Aplicações com Ruído é uma forma não supervisionada de agrupar dados que dificilmente requer parâmetros de entrada, exceto por apenas 2, o que, quando comparado a outras abordagens como k-means, é uma vantagem. Vamos explorar como isso pode ser construtivo para testar e, eventualmente, negociar com Expert Advisers montados no Wizard.
preview
Simulação de mercado (Parte 04): Iniciando a classe C_Orders (I)

Simulação de mercado (Parte 04): Iniciando a classe C_Orders (I)

Neste artigo vamos começar a montar a classe C_Orders, para poder enviar pedidos ao servidor de negociação. Vamos fazer isto aos pouco. Já que o intuito será explicar o mais detalhadamente possível como isto será feito, via sistema de mensagens.
preview
Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5

Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5

Neste artigo, investigamos como o Exponente de Hurst Generalizado e o Teste de Razão de Variância podem ser utilizados para analisar o comportamento das séries de preços em MQL5.
preview
Redes neurais em trading: Transformer vetorial hierárquico (Conclusão)

Redes neurais em trading: Transformer vetorial hierárquico (Conclusão)

Continuaremos a explorar o método Transformer Vetorial Hierárquico. Neste artigo, concluiremos a construção do modelo, realizando seu treinamento e teste em dados históricos reais.
preview
Simulação de mercado (Parte 09): Sockets (III)

Simulação de mercado (Parte 09): Sockets (III)

Este artigo é continuação do artigo anterior. Aqui vamos ver como o Expert Advisor será implementado. Mas principalmente como deverá ser feito o código do servidor. Isto por que, o código que foi visto no artigo anterior não é o suficiente para que possamos de fato fazer com que as coisas funcionem como deverão. Então é necessário que você veja ambos artigos para compreender mais profundamente o que estará acontecendo.
preview
Vantagens do Assistente MQL5 que você precisa saber (Parte 12): Polinômio de Newton

Vantagens do Assistente MQL5 que você precisa saber (Parte 12): Polinômio de Newton

O polinômio de Newton, que cria equações quadráticas a partir de um conjunto de vários pontos, é uma abordagem arcaica, mas interessante para a análise de séries temporais. Neste artigo, tentaremos explorar quais aspectos dessa abordagem podem ser úteis para os traders, bem como eliminar suas limitações.
preview
As modificações mais conhecidas do algoritmo de busca cooperativa artificial (Artificial Cooperative Search, ACSm)

As modificações mais conhecidas do algoritmo de busca cooperativa artificial (Artificial Cooperative Search, ACSm)

Neste artigo, examinamos a evolução do algoritmo ACS: três modificações visando melhorar as características de convergência e eficácia do algoritmo. A transformação de um dos principais algoritmos de otimização. Das modificações de matrizes a abordagens revolucionárias para a formação de populações.
preview
Integrando o MQL5 com pacotes de processamento de dados (Parte 2): Aprendizado de Máquina e Análise Preditiva

Integrando o MQL5 com pacotes de processamento de dados (Parte 2): Aprendizado de Máquina e Análise Preditiva

Na nossa série sobre integração do MQL5 com pacotes de processamento de dados, mergulhamos na poderosa combinação de aprendizado de máquina e análise preditiva. Exploraremos como conectar o MQL5 de forma perfeita com bibliotecas populares de aprendizado de máquina, para possibilitar modelos preditivos sofisticados para os mercados financeiros.
preview
Desenvolvendo um EA multimoeda (Parte 19): Criando etapas implementadas em Python

Desenvolvendo um EA multimoeda (Parte 19): Criando etapas implementadas em Python

Até agora, analisamos a automação da execução de procedimentos sequenciais de otimização de EAs exclusivamente no testador de estratégias padrão. Mas o que fazer se, entre essas execuções, quisermos processar alguns dados já obtidos por outros meios? Vamos tentar adicionar a possibilidade de criar novas etapas de otimização, executadas por programas escritos em Python.
preview
Negociação com spreads no mercado Forex usando o fator de sazonalidade

Negociação com spreads no mercado Forex usando o fator de sazonalidade

Este artigo analisa as possibilidades de criação e fornecimento de dados de relatórios sobre o uso do fator de sazonalidade na negociação por meio de spreads no mercado Forex.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 18): Pesquisa de Arquitetura Neural com Vetores Próprios

Técnicas do MQL5 Wizard que você deve conhecer (Parte 18): Pesquisa de Arquitetura Neural com Vetores Próprios

Pesquisa de Arquitetura Neural, uma abordagem automatizada para determinar as configurações ideais de uma rede neural, pode ser um diferencial ao enfrentar muitas opções e grandes conjuntos de dados de teste. Examinamos como, quando emparelhado com Vetores Próprios, esse processo pode se tornar ainda mais eficiente.
preview
O Método de Agrupamento para Manipulação de Dados: Implementando o Algoritmo Iterativo Multicamadas em MQL5

O Método de Agrupamento para Manipulação de Dados: Implementando o Algoritmo Iterativo Multicamadas em MQL5

Neste artigo, descrevemos a implementação do Algoritmo Iterativo Multicamadas do Método de Agrupamento para Manipulação de Dados em MQL5.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 17): Negociação Multimoedas

Técnicas do MQL5 Wizard que você deve conhecer (Parte 17): Negociação Multimoedas

Negociar com múltiplas moedas não está disponível por padrão quando um expert advisor é montado através do assistente. Examinamos dois hacks possíveis que os traders podem fazer ao tentar testar suas ideias com mais de um símbolo ao mesmo tempo.
preview
Ciência de dados e aprendizado de máquina (Parte 29): Como selecionar os melhores dados de Forex para treinar IA

Ciência de dados e aprendizado de máquina (Parte 29): Como selecionar os melhores dados de Forex para treinar IA

Neste artigo, analisamos em detalhes os aspectos importantes para a escolha dos dados mais relevantes e de qualidade do mercado Forex e para melhorar o desempenho dos modelos de inteligência artificial.
preview
Colmeia artificial de abelhas (ABHA): Testes e resultados

Colmeia artificial de abelhas (ABHA): Testes e resultados

Neste artigo, continuaremos o estudo do algoritmo de colmeia de abelhas ABHA, aprofundando-nos na escrita de código e analisando os métodos restantes. Lembremos que cada abelha no modelo é apresentada como um agente individual, cujo comportamento depende de informações internas e externas, bem como de seu estado motivacional. Realizaremos testes do algoritmo em diferentes funções e apresentaremos os resultados em uma tabela de classificação.
preview
Do básico ao intermediário: Eventos (I)

Do básico ao intermediário: Eventos (I)

Com base em tudo que já foi mostrado e visto até este ponto. Acredito que já podemos começar a implementar algum tipo de aplicação para ser executada diretamente no gráfico de algum ativo. Mas antes mesmo de podermos fazer isto, precisamos falar de uma coisa que para iniciantes é bastante confusa. Que é justamente o fato de que o aplicações desenvolvidas em MQL5, e voltadas para serem vistas em um gráfico, não são criadas da mesma forma que vimos até este momento. Neste artigo começaremos a entender um pouco melhor sobre isto.
preview
Algoritmos de otimização populacionais: evolução de grupos sociais (Evolution of Social Groups, ESG)

Algoritmos de otimização populacionais: evolução de grupos sociais (Evolution of Social Groups, ESG)

Neste artigo, consideraremos o princípio de construção de algoritmos multipopulacionais e, como exemplo desse tipo de algoritmos, analisaremos a Evolução de Grupos Sociais (ESG), um novo algoritmo autoral. Analisaremos os conceitos principais, os mecanismos de interação entre populações e as vantagens desse algoritmo, bem como examinaremos seu desempenho em tarefas de otimização.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 11): Paredes numéricas

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 11): Paredes numéricas

As paredes numéricas (Number Walls) são uma variante do registrador de deslocamento com realimentação linear (Linear Shift Back Registers), que avalia previamente sequências para previsibilidade verificando a convergência. Vamos ver como essas ideias podem ser usadas no MQL5.
preview
Classe base de algoritmos populacionais como alicerce para otimização eficiente

Classe base de algoritmos populacionais como alicerce para otimização eficiente

Uma tentativa única de pesquisa para combinar uma série de algoritmos populacionais em uma única classe com o objetivo de simplificar a aplicação dos métodos de otimização. Essa abordagem não apenas abre possibilidades para o desenvolvimento de novos algoritmos, incluindo variantes híbridas, mas também estabelece um banco de testes básico universal. Este banco se torna uma ferramenta chave para a escolha do algoritmo ideal, dependendo da tarefa específica em questão.
preview
Desenvolvendo um EA multimoeda (Parte 16): Influência de diferentes históricos de cotações nos resultados de testes

Desenvolvendo um EA multimoeda (Parte 16): Influência de diferentes históricos de cotações nos resultados de testes

O EA em desenvolvimento deve apresentar bons resultados ao operar com diferentes corretoras. Porém, até agora, os testes foram realizados com base em cotações de uma conta de demonstração da MetaQuotes. Vamos verificar se o EA está pronto para operar em contas reais com cotações diferentes das utilizadas durante os testes e otimizações.
preview
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 8): Desenvolvimento de Expert Advisor (I)

Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 8): Desenvolvimento de Expert Advisor (I)

Nesta discussão, vamos criar nosso primeiro Expert Advisor em MQL5 com base no indicador que fizemos no artigo anterior. Vamos cobrir todas as funcionalidades necessárias para tornar o processo automático, incluindo o gerenciamento de riscos. Isso beneficiará extensivamente os usuários ao avançarem da execução manual de negociações para sistemas automatizados.
preview
Simulação de mercado (Parte 08): Sockets (II)

Simulação de mercado (Parte 08): Sockets (II)

Que tal criar algo prático usando soquetes? Bem, neste artigo, vamos iniciar a criação de um mini chat. Acompanhe como isto será feito, pois será algo bastante interessante. Lembre-se que o que será mostrado aqui tem como objetivo ser um código puramente didático. Você de fato não deve usar este código de forma comercial ou em uma aplicação finalizada. Pois o mesmo não conta com nenhum tipo de segurança no transporte dos dados. Sendo possível ver o conteúdo do que está sendo transportado pelo soquete.
preview
Redes neurais de maneira fácil (Parte 69): restrição de política comportamental com base na densidade de dados off-line (SPOT)

Redes neurais de maneira fácil (Parte 69): restrição de política comportamental com base na densidade de dados off-line (SPOT)

No aprendizado off-line, utilizamos um conjunto de dados fixo, e isso não abrange toda a variedade do ambiente. Durante o processo de treinamento, nosso Agente pode gerar ações fora desse conjunto. Sem feedback do ambiente, a precisão dessas ações é duvidosa. Manter a política do Agente dentro do conjunto de treinamento se torna importante para confiar nos resultados. Vamos falar mais sobre isso aqui neste artigo.
preview
Do básico ao intermediário: Recursividade

Do básico ao intermediário: Recursividade

Este artigo, veremos um conceito de programação muito interessante e bem divertido. Porém que deve ser tratado com extremo respeito. Já que um mal uso, ou mal entendimento do mesmo, torna programas relativamente simples em algo desnecessariamente complicado. Porém o bom uso, e a perfeita adequação em situações igualmente adequadas. Torna a recursividade um grande aliado para resolver questões que de outra forma seria muito mais trabalhoso e demorado. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 28): GANs revisitados com uma introdução às taxas de aprendizado

Técnicas do MQL5 Wizard que você deve conhecer (Parte 28): GANs revisitados com uma introdução às taxas de aprendizado

A Taxa de Aprendizado é um tamanho de passo em direção a um objetivo de treinamento nos processos de treinamento de muitos algoritmos de aprendizado de máquina. Examinamos o impacto que seus diversos cronogramas e formatos podem ter no desempenho de uma Rede Generativa Adversária, um tipo de rede neural que já havíamos analisado em um artigo anterior.
preview
Do básico ao intermediário: Estruturas (III)

Do básico ao intermediário: Estruturas (III)

Neste artigo vamos ver o que seria de fato um código estruturado. Muita gente confunde código estruturado com um código organizado. No entanto, existe uma diferença entre ambos conceitos. E isto será explicando neste artigo. Apesar da aparente complexidade que será notada no primeiro contato com este tipo de codificação, procurei abordar o tema da melhor maneira possível. Mas este artigo é apenas o primeiro passo para algo ainda maior.
preview
Redes neurais de maneira fácil (Parte 74): previsão adaptativa de trajetórias

Redes neurais de maneira fácil (Parte 74): previsão adaptativa de trajetórias

Proponho a você conhecer um método bastante eficaz de previsão de trajetórias multiagentes, que é capaz de se adaptar a diferentes condições ambientais.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana

Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana

A inferência bayesiana é a adoção do Teorema de Bayes para atualizar hipóteses de probabilidade à medida que novas informações são disponibilizadas. Isso intuitivamente leva à adaptação na análise de séries temporais, então veremos como podemos usar isso na construção de classes personalizadas, não apenas para o sinal, mas também para gerenciamento de dinheiro e trailing-stops.
preview
Análise volumétrica com redes neurais como chave para tendências futuras

Análise volumétrica com redes neurais como chave para tendências futuras

O artigo explora a possibilidade de melhorar a previsão de preços com base na análise do volume de negociações, integrando os princípios da análise técnica com a arquitetura de redes neurais LSTM. Dá-se atenção especial à identificação e interpretação de volumes anômalos, uso de clusterização e criação de características baseadas em volume, além de sua definição no contexto de aprendizado de máquina.