MQL5言語での取引システムの自動化に関する記事

icon

多種多様なアイデアを核としたトレーディングシステムに関する記事をご覧ください。統計とロウソク足チャートのパターンをどのように使用するか、どのようにシグナルをフィルタするか、どこでセマフォインディケータを使用するかを学べます。

MQL5ウィザードを使用すれば、プログラミングなしでロボットを作成して、トレーディングのアイデアを素早く確認できます。遺伝的アルゴリズムについて知るためにウィザードを使用してください。

新しい記事を追加
最新 | ベスト
preview
独自のLLMをEAに統合する(第5部):LLMを使った取引戦略の開発とテスト(III) - アダプタチューニング

独自のLLMをEAに統合する(第5部):LLMを使った取引戦略の開発とテスト(III) - アダプタチューニング

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
MQL5での取引戦略の自動化(第2回):一目均衡表とオーサムオシレーターを備えた雲抜けシステム

MQL5での取引戦略の自動化(第2回):一目均衡表とオーサムオシレーターを備えた雲抜けシステム

この記事では、一目均衡表とオーサムオシレーター(Awesome Oscillator)を活用し、「雲抜け戦略」を自動化するエキスパートアドバイザー(EA)を作成します。インジケーターハンドルの初期化、ブレイクアウト条件の検出、自動売買におけるエントリーおよびエグジットの実装手順について、段階的に解説します。さらに、トレーリングストップやポジション管理ロジックを組み込むことで、EAのパフォーマンスと市場適応力を高める方法にも触れます。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第2回):USDJPYスキャルピング戦略

MQL5で自己最適化エキスパートアドバイザーを構築する(第2回):USDJPYスキャルピング戦略

今日は私たちと一緒にUSDJPYペアを中心とした取引戦略の構築に挑戦するしましょう。日足のローソク足パターンは、潜在的により強い動きがあるため、日足パターンで形成されるローソク足パターンを取引します。私たちの当初の戦略は利益を生み、これにより獲得した資本を保護するために、戦略を継続的に改良し、安全性をさらに高める努力を続けることができました。
preview
プライスアクション分析ツールキットの開発(第5回):Volatility Navigator EA

プライスアクション分析ツールキットの開発(第5回):Volatility Navigator EA

市場の方向性を判断するのは簡単ですが、いつエントリーするかを知るのは難しい場合があります。連載「プライスアクション分析ツールキットの開発」の一環として、エントリーポイント、テイクプロフィットレベル、ストップロスの配置を提供する別のツールを紹介できることを嬉しく思います。これを実現するために、MQL5プログラミング言語を利用しました。この記事では、各ステップについて詳しく見ていきましょう。
preview
古典的な戦略を再構築する(第12回):EURUSDブレイクアウト戦略

古典的な戦略を再構築する(第12回):EURUSDブレイクアウト戦略

MQL5で収益性の高いブレイクアウト取引戦略を構築する挑戦に、ぜひご参加ください。EURUSDペアを選択し、時間枠で価格ブレイクアウトを取引しましたが、私たちのシステムでは偽のブレイクアウトと真のトレンドの始まりを区別するのが難しかったです。そこで、損失を最小限に抑えながら利益を増やすことを目的としたフィルターをシステムに組み込みました。最終的にはシステムを収益性の高いものにし、誤ったブレイクアウトに対する耐性を高めることに成功しました。
preview
出来高による取引の洞察:トレンドの確認

出来高による取引の洞察:トレンドの確認

強化型トレンド確認手法は、プライスアクション、出来高分析、そして機械学習を組み合わせることで、真の市場動向を見極めることを目的としています。この手法では、取引を検証するために、価格のブレイクアウトと平均比50%以上の出来高急増という2つの条件を満たす必要があります。さらに、追加の確認手段としてLSTMニューラルネットワークを活用します。システムはATR (Average True Range)に基づいたポジションサイズ設定と動的リスク管理を採用しており、誤ったシグナルを排除しつつ、多様な市場環境に柔軟に対応できる設計となっています。
preview
MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発

MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発

詳細なステップバイステップのアプローチで拡張履歴管理EX5ライブラリを作成し、MQL5を使用してクローズされたポジション、注文、取引履歴を取得、処理、分類、並べ替え、分析、管理する方法を学びます。
preview
MQL5入門(第10回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド

MQL5入門(第10回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド

この記事では、プロジェクトベースのアプローチを使用してRSIベースのエキスパートアドバイザー(EA)を作成する方法に焦点を当て、MQL5の組み込みインジケーターの活用方法を紹介します。RSI値を取得して活用し、流動性スイープに対応し、チャートオブジェクトを使用して取引の視覚化を強化する方法を学びます。さらに、パーセンテージベースのリスク設定、リスク報酬比率の実装、利益確保のためのリスク修正など、効果的なリスク管理についても解説します。
preview
ケリー基準とモンテカルロシミュレーションを使用したポートフォリオリスクモデル

ケリー基準とモンテカルロシミュレーションを使用したポートフォリオリスクモデル

数十年にわたり、トレーダーは破産リスクを最小限に抑えつつ長期的な資産成長を最大化する手法として、ケリー基準の公式を活用してきました。しかし、単一のバックテスト結果に基づいてケリー基準を盲目的に適用することは、個人トレーダーにとって非常に危険です。というのも、実際の取引では時間の経過とともに取引優位性が薄れ、過去の実績は将来の結果を保証するものではないからです。本記事では、Pythonによるモンテカルロシミュレーションの結果を取り入れ、MetaTrader 5上で1つ以上のエキスパートアドバイザー(EA)にケリー基準を現実的に適用するためのリスク配分アプローチを紹介します。
preview
MQL5経済指標カレンダーを使った取引(第5回):レスポンシブコントロールとフィルターボタンでダッシュボードを強化する

MQL5経済指標カレンダーを使った取引(第5回):レスポンシブコントロールとフィルターボタンでダッシュボードを強化する

この記事では、ダッシュボードの制御を改善するために、通貨ペアフィルター、重要度レベル、時間フィルター、キャンセルオプションのボタンを作成します。これらのボタンは、ユーザーのアクションに動的に応答するようにプログラムされており、シームレスな操作を可能にします。また、ダッシュボードにリアルタイムの変更を反映するために、ユーザーの行動を自動化します。これにより、パネルの全体的な機能性、モビリティ、応答性が向上します。
preview
MQL5経済指標カレンダーを使った取引(第4回):ダッシュボードでのリアルタイムニュース更新の実装

MQL5経済指標カレンダーを使った取引(第4回):ダッシュボードでのリアルタイムニュース更新の実装

この記事では、リアルタイムのニュース更新機能を実装することで、経済指標カレンダーダッシュボードを強化し、市場情報を常に最新かつ実用的な状態に保ちます。MQL5におけるライブデータ取得技術を統合し、ダッシュボード上のイベントを継続的に更新することで、インターフェイスの応答性を向上させます。このアップデートにより、ダッシュボードから最新の経済ニュースに直接アクセスでき、最新データに基づいて取引判断を最適化できるようになります。
preview
知っておくべきMQL5ウィザードのテクニック(第50回):Awesome Oscillator

知っておくべきMQL5ウィザードのテクニック(第50回):Awesome Oscillator

Awesome Oscillatorは、モメンタム(勢い)を測定するために使用されるビル・ウィリアムズのインジケーターの一つです。複数のシグナルを生成できるため、以前の記事と同様に、MQL5ウィザードクラスとアセンブリを活用して、パターンベースでこれらを確認します。
preview
知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

近接方策最適化は、強化学習におけるアルゴリズムの一つで、モデルの安定性を確保するために、しばしばネットワーク形式で非常に小さな増分で方策を更新します。前回の記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)において、これがどのように役立つかを探ります。
preview
MQL5経済指標カレンダーを使った取引(第3回):通貨、重要度、時間フィルターの追加

MQL5経済指標カレンダーを使った取引(第3回):通貨、重要度、時間フィルターの追加

この記事では、MQL5経済カレンダーダッシュボードにフィルターを実装し、通貨、重要度、時間ごとにニュースイベントの表示を絞り込みます。まず、各カテゴリのフィルター基準を設定し、それをダッシュボードに組み込むことで、関連するイベントのみが表示されるようにします。最後に、各フィルターが動的に更新され、トレーダーにとって必要な、焦点を絞ったリアルタイムの経済情報が提供されるようにします。
preview
プライスアクション分析ツールキットの開発(第2回): Analytical Commentスクリプト

プライスアクション分析ツールキットの開発(第2回): Analytical Commentスクリプト

プライスアクションを簡素化するというビジョンに沿って、市場分析を大幅に強化し、十分な情報に基づいた意思決定を支援する新しいツールを導入できることを嬉しく思います。このツールは、前日の価格、重要な支持と抵抗のレベル、取引量などの主要なテクニカル指標を表示し、チャート上に視覚的なヒントを自動的に生成します。
preview
MQL5での取引戦略の自動化(第1回):Profitunityシステム(ビル・ウィリアムズ著「Trading Chaos」)

MQL5での取引戦略の自動化(第1回):Profitunityシステム(ビル・ウィリアムズ著「Trading Chaos」)

この記事では、ビル・ウィリアムズのProfitunityシステムを詳しく分析し、その核心となる構成要素や、市場の混乱の中での独自の取引アプローチを解説します。MQL5用いたシステムの実装方法を、主要なインジケーターやエントリー/エグジットシグナルの自動化に焦点を当てながら説明します。さらに、戦略のテストと最適化をおこない、さまざまな市場環境におけるパフォーマンスについて考察します。
preview
知っておくべきMQL5ウィザードのテクニック(第47回):時間差分を用いた強化学習

知っておくべきMQL5ウィザードのテクニック(第47回):時間差分を用いた強化学習

時間差分学習は、エージェントの訓練中に予測された報酬と実際の報酬の差に基づいてQ値を更新する強化学習のアルゴリズムの一つです。特に、状態と行動のペアにこだわらずにQ値を更新する点に特徴があります。したがって、これまでの記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)での適用方法を検討していきます。
preview
知っておくべきMQL5ウィザードのテクニック(第48回):ビル・ウィリアムズのアリゲーター

知っておくべきMQL5ウィザードのテクニック(第48回):ビル・ウィリアムズのアリゲーター

ビル・ウィリアムズが考案したアリゲーターインジケーターは、明確なシグナルを生成し、他のインジケーターと組み合わせて使用されることが多い、多機能なトレンド識別インジケーターです。MQL5ウィザードのクラスとアセンブリを活用することで、パターンベースでさまざまなシグナルをテストできるため、このインジケーターも検討対象となります。
preview
MQL5経済指標カレンダーを使った取引(第2回):ニュースダッシュボードパネルの作成

MQL5経済指標カレンダーを使った取引(第2回):ニュースダッシュボードパネルの作成

この記事では、MQL5経済指標カレンダーを使用して、取引戦略を強化するための実用的なニュースダッシュボードパネルを作成します。まず、イベント名、重要度、タイミングなどの重要な要素に焦点を当ててレイアウトを設計し、その後、MQL5内でのセットアップに進みます。最後に、最も関連性の高いニュースのみを表示するフィルタリングシステムを実装し、トレーダーが影響力のある経済イベントに迅速にアクセスできるようにします。
preview
古典的な戦略を再構築する(第11回):移動平均クロスオーバー(II)

古典的な戦略を再構築する(第11回):移動平均クロスオーバー(II)

移動平均とストキャスティクスオシレーターは、トレンドに従う取引シグナルを生成するために使用できます。ただし、これらのシグナルは価格変動が発生した後にのみ観察されます。AIを使用することで、テクニカルインジケーターに内在するこの遅れを効果的に克服できます。この記事では、既存の取引戦略を改善できるような、完全に自律的なAI搭載のエキスパートアドバイザー(EA)を作成する方法を説明します。最も古い取引戦略であっても、改善することは可能です。
preview
知っておくべきMQL5ウィザードのテクニック(第46回):一目均衡表

知っておくべきMQL5ウィザードのテクニック(第46回):一目均衡表

一目均衡表はトレンド識別システムとして機能する有名な日本の指標です。以前の同様の記事と同様に、パターンごとにこれを調べ、MQL5ウィザードライブラリクラスとアセンブリの助けを借りて、その戦略とテストレポートも評価します。
preview
取引におけるニューラルネットワーク:複雑な軌道予測法(Traj-LLM)

取引におけるニューラルネットワーク:複雑な軌道予測法(Traj-LLM)

この記事では、自動運転車の動作の分野における問題を解決するために開発された興味深い軌道予測方法を紹介します。この手法の著者は、さまざまな建築ソリューションの最良の要素を組み合わせました。
preview
取引におけるニューラルネットワーク:状態空間モデル

取引におけるニューラルネットワーク:状態空間モデル

これまでにレビューしたモデルの多くは、Transformerアーキテクチャに基づいています。ただし、長いシーケンスを処理する場合には非効率的になる可能性があります。この記事では、状態空間モデルに基づく時系列予測の別の方向性について説明します。
preview
ウィリアム・ギャンの手法(第2回):ギャンスクエアインジケーターの作成

ウィリアム・ギャンの手法(第2回):ギャンスクエアインジケーターの作成

ギャンのSquare of 9に基づいて、時間と価格を2乗したインジケーターを作成します。コードを準備し、プラットフォームで異なる時間間隔でインジケーターをテストします。
preview
ウィリアム・ギャンの手法(第1回):ギャンアングルインジケーターの作成

ウィリアム・ギャンの手法(第1回):ギャンアングルインジケーターの作成

ギャン理論の本質は何でしょうか。ギャンアングルはどのように構築されるのでしょうか。本記事では、MetaTrader5向けのギャンアングルインジケーターを作成します。
preview
取引におけるニューラルネットワーク:独立したチャネルへのグローバル情報の注入(InjectTST)

取引におけるニューラルネットワーク:独立したチャネルへのグローバル情報の注入(InjectTST)

最新のマルチモーダル時系列予測方法のほとんどは、独立チャネルアプローチを使用しています。これにより、同じ時系列の異なるチャネルの自然な依存関係が無視されます。2つのアプローチ(独立チャネルと混合チャネル)を賢く使用することが、モデルのパフォーマンスを向上させる鍵となります。
preview
取引におけるニューラルネットワーク:TEMPO法の実践結果

取引におけるニューラルネットワーク:TEMPO法の実践結果

TEMPO法について引き続き学習します。この記事では、実際の履歴データに対する提案されたアプローチの実際の有効性を評価します。
preview
取引におけるニューラルネットワーク:時系列予測のための言語モデルの使用

取引におけるニューラルネットワーク:時系列予測のための言語モデルの使用

時系列予測モデルの研究を続けます。本記事では、事前訓練済みの言語モデルを活用した複雑なアルゴリズムについて説明します。
preview
取引におけるニューラルネットワーク:時系列予測のための軽量モデル

取引におけるニューラルネットワーク:時系列予測のための軽量モデル

軽量な時系列予測モデルは、最小限のパラメータ数で高いパフォーマンスを実現します。これにより、コンピューティングリソースの消費を抑えつつ、意思決定の迅速化が可能となります。こうしたモデルは軽量でありながら、より複雑なモデルと同等の予測精度を達成できます。
preview
取引におけるカオス理論(第2回):さらなる研究

取引におけるカオス理論(第2回):さらなる研究

金融市場におけるカオス理論の探究を続けます。今回は通貨やその他の資産の分析への適用性について考えます。
preview
多通貨エキスパートアドバイザーの開発(第16回):異なるクォート履歴がテスト結果に与える影響

多通貨エキスパートアドバイザーの開発(第16回):異なるクォート履歴がテスト結果に与える影響

開発中のエキスパートアドバイザー(EA)は、さまざまなブローカーとの取引で良好な結果を示すことが期待されていますが、現時点では、MetaQuotesデモ口座からのクォートを使用してテストを実行しています。テストや最適化に使用したクォートとは異なる価格データを持つ取引口座でも、EAが正しく機能する準備が整っているのかを確認してみましょう。
preview
取引におけるニューラルネットワーク:Adam-mini最適化によるメモリ消費量の削減

取引におけるニューラルネットワーク:Adam-mini最適化によるメモリ消費量の削減

モデルの訓練と収束プロセスの効率を向上させるためのアプローチの1つが、最適化手法の改良です。Adam-miniは、従来のAdamアルゴリズムを改良し、より効率的な適応型最適化を実現することを目的とした手法です。
preview
リプレイシステムの開発(第59回):新たな未来

リプレイシステムの開発(第59回):新たな未来

さまざまなアイデアを適切に理解することで、より少ない労力でより多くのことを実現できます。この記事では、サービスがチャートと対話する前にテンプレートを構成する必要がある理由について説明します。また、マウスポインタを改良し、より多くの機能を持たせることについても考察します。
preview
カスタムインジケーター:ネット口座の部分的なエントリー、エグジット、リバーサル取引のプロット

カスタムインジケーター:ネット口座の部分的なエントリー、エグジット、リバーサル取引のプロット

この記事では、MQL5でインジケーターを作成する非標準的な方法について説明します。トレンドやチャートパターンに注目するのではなく、部分的なエントリーやエグジットを含めた独自のポジション管理を目的とします。取引履歴やポジションに関連する動的マトリックスと、いくつかの取引機能を広範に活用し、これらの取引がおこなわれた場所をチャート上に表示します。
preview
リプレイシステムの開発(第58回):サービスへの復帰

リプレイシステムの開発(第58回):サービスへの復帰

リプレイ/シミュレーターサービスの開発と改良を一時中断していましたが、再開することにしました。ターミナルグローバルのようなリソースの使用をやめたため、いくつかの部分を完全に再構築しなければなりません。ご心配なく。このプロセスを詳細に説明することで、誰もが私たちのサービスの進展についていけるようにします。
preview
リプレイシステムの開発(第57回):テストサービスについて

リプレイシステムの開発(第57回):テストサービスについて

注意点が1つあります。この記事にはサービスコードは含まれておらず、次の記事でのみ提供されます。ただし、実際の開発の出発点として同じコードを使用するため、この記事ではその説明をおこないます。ですので、注意深く、そして忍耐強く読んでください。毎日、すべてがさらに面白くなっていきますので、次の記事を楽しみにお待ちください。
preview
知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習

知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習

モンテカルロは、ウィザードで組み立てられたエキスパートアドバイザー(EA)における実装を検討するために取り上げる、強化学習の4つ目の異なるアルゴリズムです。ランダムサンプリングに基づいていますが、多様なシミュレーション手法を活用できる点が特徴です。
preview
取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数

取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数

カオス理論は金融市場に適用できるでしょうか。この記事では、従来のカオス理論とカオスシステムがビル・ウィリアムズが提案した市場のカオスの概念とどのように異なるかについて考察します。
preview
多通貨エキスパートアドバイザーの開発(第15回):実際の取引のためのEAの準備

多通貨エキスパートアドバイザーの開発(第15回):実際の取引のためのEAの準備

既製のエキスパートアドバイザー(EA)の完成に徐々に近づくにつれ、取引戦略のテスト段階では二次的に思える問題にも注意を払う必要があります。これらの問題は、実際の取引に移行する際に重要となります。
preview
取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)

取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)

この記事では、時空間変換を活用し、今後の価格変動を効果的に予測する手法について解説します。STNNの数値予測精度を向上させるために、データの重要な側面をより適切に考慮できる連続アテンションメカニズムが提案されています。