MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
preview
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(最終回)

取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(最終回)

SAMformerは、長期の時系列予測におけるTransformerモデルの主要な欠点、すなわち学習の複雑さや小規模データセットでの汎化性能の低さに対して解決策を提供します。その浅いアーキテクチャとシャープネス認識型最適化により、不適切な局所解に陥ることを防ぎます。本記事では、MQL5を用いたアプローチの実装を続け、実際的な価値を評価していきます。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第10回):行列分解

MQL5で自己最適化エキスパートアドバイザーを構築する(第10回):行列分解

行列分解は、データの特性を理解するために用いられる数学的手法です。行と列で整理された大規模な市場データに行列分解を適用することで、市場のパターンや特性を明らかにすることができます。行列分解は非常に強力なツールであり、本記事ではMetaTrader 5のターミナル内でMQL5 APIを活用し、市場データをより深く分析する方法を紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第63回):DeMarkerとEnvelope Channelsのパターンを活用する

知っておくべきMQL5ウィザードのテクニック(第63回):DeMarkerとEnvelope Channelsのパターンを活用する

DeMarkerオシレーターとEnvelopesインジケーターは、エキスパートアドバイザー(EA)を開発するときに組み合わせることができるモメンタムおよびサポート/レジスタンスツールです。パターンごとに何が役に立つのか、そして何を避けることができるのかを調べます。いつものように、ウィザードで組み立てられたEAと、エキスパートシグナルクラスに組み込まれているパターン使用関数を使用しています。
preview
MQL5取引ツール(第5回):リアルタイム銘柄監視のためのローリングティッカーテープの作成

MQL5取引ツール(第5回):リアルタイム銘柄監視のためのローリングティッカーテープの作成

本記事では、MQL5を用いて複数の通貨ペアをリアルタイムで監視できるローリングティッカーテープを開発します。Bid価格(買値)、スプレッド、日次変化率をスクロール表示し、価格変動やトレンドを効果的に強調するために、フォント、色、スクロール速度をカスタマイズ可能にします。
preview
SMC (Smart Money Concepts)で取引のレベルアップを実現する:OB、BOS、FVG

SMC (Smart Money Concepts)で取引のレベルアップを実現する:OB、BOS、FVG

SMC(Smart Money Concepts、スマートマネーコンセプト)のOB(Order Blocks、注文ブロック)、BOS(Break of Structure、ブレイクオブストラクチャ)、FVG(Fair Value Gaps、公正価格ギャップ)を1つの強力なEAに統合することで、取引をさらに進化させることができます。自動モードで戦略を実行することも、特定のSMCコンセプトだけを使用することも可能で、柔軟かつ精度の高い取引が実現します。
preview
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VII) - ニュース取引におけるポストインパクト戦略

初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VII) - ニュース取引におけるポストインパクト戦略

高インパクトの経済ニュースが発表された直後の1分間は、ウィップソー(騙しの多い相場)リスクが非常に高い時間帯です。この短い瞬間、価格変動は不規則で、かつ極めてボラティリティが高く、両方向のペンディング注文が立て続けに発動されることも少なくありません。しかし、通常は1分以内には市場が次第に安定し、従来のトレンドへと戻ったり、修正の動きを見せたりしながら、より通常に近いボラティリティ水準に落ち着いていきます。このセクションでは、ニュース取引における代替アプローチを検討し、その有効性を検証し、トレーダーの戦略ツールキットにどのように加えられるかを探っていきます。詳細と洞察は、以下の項目で順を追って解説します。
preview
取引におけるニューラルネットワーク:層状メモリを持つエージェント

取引におけるニューラルネットワーク:層状メモリを持つエージェント

層状メモリアプローチは、人間の認知プロセスを模倣することで、複雑な金融データの処理や新しいシグナルへの適応を可能にし、動的な市場における投資判断の有効性を向上させます。
preview
MQL5経済指標カレンダーを使った取引(第10回):シームレスなニュースナビゲーションのためのドラッグ可能ダッシュボードとインタラクティブホバー効果

MQL5経済指標カレンダーを使った取引(第10回):シームレスなニュースナビゲーションのためのドラッグ可能ダッシュボードとインタラクティブホバー効果

本記事では、MQL5経済カレンダーを強化し、ドラッグ可能なダッシュボードを導入してインターフェースの位置を自由に変更できるようにし、チャートの視認性を高めます。また、ボタンのホバー効果を実装して操作性を高め、動的に変化するスクロールバーによってスムーズなナビゲーションを実現します。
preview
知っておくべきMQL5ウィザードのテクニック(第71回):MACDとOBVのパターンの使用

知っておくべきMQL5ウィザードのテクニック(第71回):MACDとOBVのパターンの使用

移動平均収束拡散法(MACD)オシレーターとオンバランスボリューム(OBV)オシレーターは、MQL5のエキスパートアドバイザー(EA)内で併用できるもう一つの指標ペアです。本連載における慣例どおり、この組み合わせも補完関係にあり、MACDがトレンドを確認し、OBVが出来高を検証します。MQL5ウィザードを用いて、この2つが持つ潜在力を構築、検証します。
preview
MQL5からDiscordへのメッセージの送信、Discord-MetaTrader 5ボットの作成

MQL5からDiscordへのメッセージの送信、Discord-MetaTrader 5ボットの作成

Telegramと同様に、Discordもその通信APIを使用してJSON形式の情報やメッセージを受信することができます。本記事では、MetaTrader5からDiscordの取引コミュニティに取引シグナルやアップデートを送信するためにDiscord APIをどのように利用できるかを探っていきます。
preview
MQL5での取引戦略の自動化(第25回):最小二乗法と動的シグナル生成を備えたTrendline Trader

MQL5での取引戦略の自動化(第25回):最小二乗法と動的シグナル生成を備えたTrendline Trader

本記事では、最小二乗法を用いてサポートおよびレジスタンスのトレンドラインを検出し、価格がこれらのラインに触れた際に動的な売買シグナルを生成するTrendline Traderプログラムを開発します。また、生成されたシグナルに基づきポジションをオープンする仕組みも構築します。
preview
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VI) - ニュース取引のための指値注文戦略

初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VI) - ニュース取引のための指値注文戦略

本記事では、ニュースを表示するだけでなく実際に取引を実行できるよう、EA(エキスパートアドバイザー)の機能拡張に焦点を当てます。MQL5上で自動売買の実装方法を解説し、「News Headline EA」を完全に反応的な取引システムへと発展させていきます。EAは、その豊富な機能により、アルゴリズム開発者にとって非常に強力なツールです。これまでの記事では、ニュースおよび経済指標カレンダーイベントの可視化ツールを中心に開発し、AIインサイトレーンやテクニカル指標分析を統合してきました。
preview
MQL5取引ツール(第4回):動的配置とトグル機能による多時間軸スキャナダッシュボードの改善

MQL5取引ツール(第4回):動的配置とトグル機能による多時間軸スキャナダッシュボードの改善

この記事では、MQL5の多時間軸スキャナーダッシュボードを、移動可能および切り替え機能付きにアップグレードします。ダッシュボードをドラッグできるようにし、画面の使用効率を高めるために最小化/最大化オプションを追加します。これらの機能強化を実装し、テストすることで、より柔軟な取引環境を実現します。
preview
MQL5取引ツール(第6回):パルスアニメーションとコントロールを備えたダイナミックホログラフィックダッシュボード

MQL5取引ツール(第6回):パルスアニメーションとコントロールを備えたダイナミックホログラフィックダッシュボード

本記事では、MQL5で動的なホログラフィックダッシュボードを作成し、RSIやボラティリティアラート、ソートオプションを使用して銘柄と時間足を監視します。さらに、パルスアニメーション、インタラクティブボタン、ホログラフィック効果を追加して、ツールを視覚的に魅力的で反応の良いものにします。
preview
知っておくべきMQL5ウィザードのテクニック(第77回):ゲーターオシレーターとA/Dオシレーターの使用

知っておくべきMQL5ウィザードのテクニック(第77回):ゲーターオシレーターとA/Dオシレーターの使用

ビル・ウィリアムズが開発したゲーターオシレーター(Gator Oscillator)とA/Dオシレーター(Accumulation/Distribution Oscillator)は、MQL5のエキスパートアドバイザー(EA)内で調和的に活用できるインジケーターペアの一例です。ゲーターオシレーターはトレンドを確認するために使用し、A/Dオシレーターは出来高を通じてそのトレンドを検証する補助指標として機能します。本記事では、これら2つのインジケーターの組み合わせについて、MQL5ウィザードを活用して構築およびテストをおこない、その有効性を検証します。
preview
取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル(最終回)

取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル(最終回)

前回の記事では、Multitask-Stockformerフレームワークを検討しました。このフレームワークは、ウェーブレット変換とマルチタスク自己アテンション(Self-Attention)モデルを組み合わせたものです。本記事では、このフレームワークのアルゴリズムをさらに実装し、実際の過去データを用いてその有効性を評価していきます。
preview
知っておくべきMQL5ウィザードのテクニック(第66回):FrAMAのパターンとForce Indexを内積カーネルで使用する

知っておくべきMQL5ウィザードのテクニック(第66回):FrAMAのパターンとForce Indexを内積カーネルで使用する

FrAMAインジケーターとForce Indexオシレーターは、トレンドと出来高のツールであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。前回の記事では、このペアを紹介し、機械学習の適用可能性を検討しました。畳み込みニューラルネットワークを使用しており、内積カーネルを利用して、これらのインジケーターの入力に基づいた予測をおこないます。これは、MQL5ウィザードと連携してEAを組み立てるカスタムシグナルクラスファイルで実行されます。
preview
古典的な戦略を再構築する(第14回):複数戦略分析

古典的な戦略を再構築する(第14回):複数戦略分析

本記事では、取引戦略のアンサンブル構築と、MT5遺伝的最適化を用いた戦略パラメータの調整について、引き続き検討していきます。本日はPythonでデータを分析し、モデルがどの戦略が優れているかをより正確に予測でき、市場リターンを直接予測するよりも高い精度を達成できることを示しました。しかし、統計モデルを用いてアプリケーションをテストしたところ、パフォーマンスは著しく低下しました。その後、遺伝的最適化が相関性の高い戦略を優先していたことが判明し、私たちは投票の重みを固定し、インジケーター設定の最適化に焦点を当てるよう方法を修正しました。
preview
MQL5での取引戦略の自動化(第24回):リスク管理とトレーリングストップを備えたロンドンセッションブレイクアウトシステム

MQL5での取引戦略の自動化(第24回):リスク管理とトレーリングストップを備えたロンドンセッションブレイクアウトシステム

本記事では、ロンドン市場開場前のレンジブレイクアウトを検出し、任意の取引タイプおよびリスク設定に基づいてペンディング注文(指値・逆指値注文)を自動で発注する「ロンドンセッションブレイクアウトシステム」を開発します。トレーリングストップ、リスクリワード比率、最大ドローダウン制限、そしてリアルタイム監視と管理をおこなうためのコントロールパネルなどの機能も組み込みます。
preview
取引におけるニューラルネットワーク:マルチエージェント自己適応モデル(MASA)

取引におけるニューラルネットワーク:マルチエージェント自己適応モデル(MASA)

マルチエージェント自己適応(MASA: Multi-Agent Self-Adaptive)フレームワークについて紹介します。本フレームワークは、強化学習と適応戦略を組み合わせ、変動の激しい市場環境においても収益性とリスク管理のバランスを実現します。
preview
取引におけるニューラルネットワーク:Attentionメカニズムを備えたエージェントのアンサンブル(MASAAT)

取引におけるニューラルネットワーク:Attentionメカニズムを備えたエージェントのアンサンブル(MASAAT)

アテンション機構と時系列解析を組み合わせたマルチエージェント自己適応型ポートフォリオ最適化フレームワーク(MASAAT: Multi-Agent Self-Adaptive Portfolio Optimization Framework)を提案します。MASAATは、価格系列や方向性の変化を分析する複数のエージェントを生成し、異なる詳細レベルで資産価格の重要な変動を特定できるように設計されています。
preview
取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル

取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル

ウェーブレット変換とマルチタスク自己アテンション(Self-Attention)モデルを組み合わせたフレームワークを紹介します。本フレームワークは、ボラティリティの高い市場環境における予測の応答性および精度の向上を目的としています。ウェーブレット変換により、資産収益率を高周波成分と低周波成分に分解し、長期的な市場トレンドと短期的な変動の双方を的確に捉えることが可能となります。
preview
データサイエンスとML(第43回):潜在ガウス混合モデル(LGMM)を用いた指標データにおける隠れパターン検出

データサイエンスとML(第43回):潜在ガウス混合モデル(LGMM)を用いた指標データにおける隠れパターン検出

チャートを見ていて、奇妙な感覚を覚えたことはありませんか。表面のすぐ下にパターンが隠されている気がして、もし解読できれば価格がどこに向かうか分かるかもしれない、そんな秘密のコードが存在するかもしれないという感覚です。ここで紹介するのがLGMM、マーケットの隠れたパターンを検出するモデルです。これは機械学習モデルで、隠れた市場のパターンを識別する手助けをします。
preview
MQL5で他の言語の実用的なモジュールを実装する(第2回):Pythonに着想を得たREQUESTSライブラリの構築

MQL5で他の言語の実用的なモジュールを実装する(第2回):Pythonに着想を得たREQUESTSライブラリの構築

この記事では、MetaTrader 5 (MQL5)でWebリクエストの送受信をより簡単におこなうために、Pythonのrequestsモジュールに似たモジュールを実装します。
preview
知っておくべきMQL5ウィザードのテクニック(第75回):Awesome Oscillatorとエンベロープの使用

知っておくべきMQL5ウィザードのテクニック(第75回):Awesome Oscillatorとエンベロープの使用

ビル・ウィリアムズによるオーサムオシレータ(AO: Awesome Oscillator)とエンベロープチャネル(Envelopes Channel)は、MQL5のエキスパートアドバイザー(EA)内で補完的に使用できる組み合わせです。AOはトレンドを検出する能力を持つためこれを利用し、一方でエンベロープチャネルはサポートおよびレジスタンスレベルを定義する目的で組み込みます。本記事は、このインジケーターの組み合わせを探求するにあたり、MQL5ウィザードを用いて両者が持つ可能性を構築および検証します。
preview
取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(StockFormer)

取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(StockFormer)

本記事では、予測符号化と強化学習(RL)アルゴリズムを組み合わせたハイブリッド取引システム「StockFormer」について解説します。本フレームワークは、統合型のDiversified Multi-Head Attention (DMH-Attn)機構を備えた3つのTransformerブランチを使用しています。DMH-Attnは、従来のAttentionモジュールを改良したもので、マルチヘッドのFeed-Forwardブロックを組み込むことにより、異なるサブスペースにわたる多様な時系列パターンを捉えることが可能です。
preview
取引におけるニューラルネットワーク:マルチエージェント自己適応モデル(最終回)

取引におけるニューラルネットワーク:マルチエージェント自己適応モデル(最終回)

前回の記事では、強化学習アプローチと自己適応戦略を組み合わせ、市場の変動下でも、収益性とリスクの両立を図ることができるマルチエージェント自己適応(MASA: Multi Agent Self Adaptive)フレームワークを紹介しました。MASAフレームワークにおける各エージェントの機能も構築済みです。本記事では、前回の内容をさらに発展させ、その論理的な結論へと到達します。
preview
知っておくべきMQL5ウィザードのテクニック(第76回): Awesome Oscillatorのパターンとエンベロープチャネルを教師あり学習で利用する

知っておくべきMQL5ウィザードのテクニック(第76回): Awesome Oscillatorのパターンとエンベロープチャネルを教師あり学習で利用する

前回の記事では、オーサムオシレータ(AO: Awesome Oscillator)とエンベロープチャネル(Envelopes Channel)のインディケーターの組み合わせを紹介しましたが、今回はこのペアリングを教師あり学習でどのように強化できるかを見ていきます。Awesome OscillatorとEnvelope Channelは、トレンドの把握とサポート/レジスタンスの補完的な組み合わせです。私たちの教師あり学習アプローチでは、CNN(畳み込みニューラルネットワーク)を使用し、ドット積カーネルとクロスタイムアテンションを活用してカーネルとチャネルのサイズを決定します。通常どおり、この処理はMQL5ウィザードでエキスパートアドバイザー(EA)を組み立てる際に利用できるカスタムシグナルクラスファイル内でおこないます。
preview
平均足を使ったプロフェッショナルな取引システムの構築(第2回):EAの開発

平均足を使ったプロフェッショナルな取引システムの構築(第2回):EAの開発

本記事では、MQL5を用いてプロフェッショナルな平均足ベースのエキスパートアドバイザー(EA)を開発する方法について解説します。入力パラメータ、列挙型、インジケーター、グローバル変数の設定方法から、コアとなる売買ロジックの実装までを順を追って説明します。また、開発したEAを金(ゴールド)でバックテストして、正しく動作するかどうかを検証する方法も学べます。
preview
MQL5での取引戦略の自動化(第27回):視覚的なフィードバックによるプライスアクションクラブハーモニックパターンの作成

MQL5での取引戦略の自動化(第27回):視覚的なフィードバックによるプライスアクションクラブハーモニックパターンの作成

本記事では、MQL5で弱気、強気両方のクラブ(Crab)ハーモニックパターンを、ピボットポイントとフィボナッチ比率を用いて識別し、正確なエントリー、ストップロス、テイクプロフィットレベルを使用して取引を自動化するクラブパターンシステムを開発します。また、XABCDパターン構造やエントリーレベルを表示するために、三角形やトレンドラインなどのチャートオブジェクトを使った視覚的な表示機能を追加します。
preview
MQL5入門(第20回):ハーモニックパターンの基礎

MQL5入門(第20回):ハーモニックパターンの基礎

本記事では、ハーモニックパターンの基本、構造、そして取引での応用方法について解説します。フィボナッチリトレースメントやフィボナッチエクステンションについて学び、MQL5におけるハーモニックパターン検出の実装方法を理解することで、より高度な取引ツールやエキスパートアドバイザー(EA)を構築するための基礎を築くことができます。
preview
初心者からエキスパートへ:NFP発表後の市場取引におけるフィボナッチ戦略の実装

初心者からエキスパートへ:NFP発表後の市場取引におけるフィボナッチ戦略の実装

金融市場において、リトレースメントの法則は最も否定しがたい力の一つです。価格は必ずリトレースするというのが経験則であり、大きな値動きにおいても、最小のティックパターンにおいても、ジグザグの形で現れることが多くあります。しかし、リトレースメントのパターン自体は固定されておらず、不確実で予測が難しいのが現状です。この不確実性があるため、トレーダーは複数のフィボナッチレベルを参照し、それぞれの影響力を確率的に考慮します。本記事では、主要経済指標発表後の短期売買における課題に対処するため、フィボナッチ手法を応用した精緻な戦略を紹介します。リトレースメントの原則とイベントドリブンの市場動向を組み合わせることで、より信頼性の高いエントリーおよびエグジットの機会を見出すことを目指します。ディスカッションに参加し、フィボナッチをイベント後取引にどのように適応できるかをご覧ください。
preview
取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(最終回)

取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(最終回)

予測符号化と強化学習アルゴリズムを組み合わせた金融時系列分析用のハイブリッド取引システム「StockFormer」の検討を引き続きおこないます。本システムは、複雑なパターンや資産間の相互依存関係を捉えることを可能にするDiversified Multi-Head Attention (DMH-Attn)機構を備えた、3つのTransformerブランチに基づいています。前回は、フレームワークの理論的な側面に触れ、DMH-Attn機構を実装しました。今回は、モデルのアーキテクチャと学習について解説します。
preview
MQL5での取引戦略の自動化(第30回):視覚的フィードバックによるプライスアクションAB-CDハーモニックパターンの作成

MQL5での取引戦略の自動化(第30回):視覚的フィードバックによるプライスアクションAB-CDハーモニックパターンの作成

本記事では、MQL5で弱気、強気双方のAB=CDハーモニックパターンを、ピボットポイントとフィボナッチ比率に基づいて識別し、正確なエントリー、ストップロス、テイクプロフィットレベルを用いて取引を自動化するAB=CDパターンエキスパートアドバイザー(EA)を開発します。さらに、チャートオブジェクトによる視覚的フィードバックによって、トレーダーの洞察を強化します。
preview
MQL5での取引戦略の自動化(第31回):プライスアクションに基づくスリードライブハーモニックパターンシステムの作成

MQL5での取引戦略の自動化(第31回):プライスアクションに基づくスリードライブハーモニックパターンシステムの作成

本記事では、MQL5においてピボットポイントとフィボナッチ比率に基づいて強気、弱気双方のスリードライブハーモニックパターンを識別し、ユーザーが選択できるカスタムエントリー、ストップロス、テイクプロフィット設定を用いて取引を実行するスリードライブパターンシステムを開発します。さらに、チャートオブジェクトによる視覚的フィードバックによって、トレーダーの洞察を強化します。
preview
知っておくべきMQL5ウィザードのテクニック(第79回):教師あり学習でのゲーターオシレーターとA/Dオシレーターの使用

知っておくべきMQL5ウィザードのテクニック(第79回):教師あり学習でのゲーターオシレーターとA/Dオシレーターの使用

前回の記事では、ゲーターオシレーターとA/Dオシレーターの組み合わせについて、通常の設定における生のシグナルを用いた場合の挙動を確認しました。この2つのインジケーターは、それぞれトレンド指標と出来高指標として相補的に機能します。今回の記事では、その続編として、教師あり学習を活用することで、前回レビューした特徴量パターンの一部をどのように強化できるかを検証します。この教師あり学習アプローチでは、CNN(畳み込みニューラルネットワーク)を用い、カーネル回帰およびドット積類似度を活用して、カーネルやチャネルのサイズを決定しています。今回もこれまでと同様に、MQL5ウィザードでエキスパートアドバイザー(EA)を組み立てられるようにしたカスタムシグナルクラスファイル内で実装しています。
preview
MQL5でのAI搭載取引システムの構築(第1回):AI API向けJSON処理の実装

MQL5でのAI搭載取引システムの構築(第1回):AI API向けJSON処理の実装

本記事では、AI API連携のためのデータ交換を扱うJSON解析フレームワークをMQL5で開発します。特に、JSON構造を処理するためのクラスに焦点を当てています。JSONデータのシリアライズ(出力用)およびデシリアライズ(入力用)メソッドを実装し、文字列、数値、オブジェクトなどの各データ型をサポートします。これにより、ChatGPTのようなAIサービスとMQL5間で正確にデータをやり取りでき、将来的なAI駆動型取引システム構築に向けた基盤を提供します。
preview
MQL5での取引戦略の自動化(第32回):プライスアクションに基づくファイブドライブハーモニックパターンシステムの作成

MQL5での取引戦略の自動化(第32回):プライスアクションに基づくファイブドライブハーモニックパターンシステムの作成

本記事では、MQL5においてピボットポイントとフィボナッチ比率に基づいて強気、弱気双方のファイブドライブ(5-0)ハーモニックパターンを識別し、ユーザーが選択できるカスタムエントリー、ストップロス、テイクプロフィット設定を用いて取引を実行するファイブドライブパターンシステムを開発します。また、A-B-C-D-E-Fパターン構造やエントリーレベルを表示するために、三角形やトレンドラインなどのチャートオブジェクトを使った視覚的フィードバックでトレーダーの洞察力を高めます。
preview
MQL5での取引戦略の自動化(第29回):プライスアクションに基づくガートレーハーモニックパターンシステムの作成

MQL5での取引戦略の自動化(第29回):プライスアクションに基づくガートレーハーモニックパターンシステムの作成

本記事では、MQL5で弱気、強気双方のガートレーハーモニックパターンを、ピボットポイントとフィボナッチ比率に基づいて識別し、正確なエントリー、ストップロス、テイクプロフィットレベルを使用して取引を自動化するガートレーパターンシステムを開発します。また、XABCDパターン構造やエントリーレベルを表示するために、三角形やトレンドラインなどのチャートオブジェクトを使った視覚的フィードバックでトレーダーの洞察力を高めます。
preview
MQL5入門(第21回):ハーモニックパターン検出の自動化

MQL5入門(第21回):ハーモニックパターン検出の自動化

MetaTrader 5でMQL5を使ってガートリーハーモニックパターンを検出して表示する方法を学びます。この記事では、スイングポイントの特定からフィボナッチ比率の適用、チャート上へのパターン描画までの手順を順を追って解説し、視覚的に確認できる形で表示する方法を紹介します。