MQL5言語での取引ロボットのプログラミング例の記事

エキスパートアドバイザはプログラミングの"頂点"であり、それぞれの自動トレーディングの開発者の求めたゴールです。このセクションの記事を読んで、あなた自身のトレーディングロボットを作成してください。記述されたステップに従うことにより、あなたはどのように自動トレーディングシステムを作成し、デバッグし、テストするかを学びます。

記事はMQL5プログラミングを教えるだけでなく、どのようにトレーディングアイデアとテクニックを導入するかを示します。あなたはどのようにトレーリングストップをプログラムするか、どのように資金管理を適用するか、どのようにインディケータ値を取得するか、さらに多くのことを学びます。

最新の | ベスト

考えられる.EAをリアルタイムで最適化するためのインジケータの使用法

トレーディングロボットの効率は、そのパラメータの正しい選択 (最適化) に依存します。 ただし、ある特定の時間間隔で最適と見なされるパラメータは、別の期間でもその有効性を保持することはできません。 その上、EA がテストの期間で利益を出したとしてもリアルでは損失になることもあります。 継続的な最適化における問題はこれらを背景としています。...

エルダーレイ (ブルパワーとベアパワー)

この記事は、ブルパワー、ベアパワー、移動平均インジケータ (EMA-指数平均)に基づいたエルダーレイトレーディングシステムを扱います。 このシステムは、アレキサンダーエルダーの著書"Trading for a Living"に記述されています。

1. テストメソッド1トレンドとレンジ戦略の組み合わせ

トレード戦略には多くのものがあります。 トレードのために、ある戦略はトレンドを探し、またある戦略はレンジ価格変動の範囲を定義します。 この2つのアプローチを組み合わせて収益性を高めることは可能でしょうか。

MQLベースのエキスパートアドバイザとデータベースの統合 (SQL server、.NET、および C#)

この記事では、MQL5 ベースのEAに対して Microsoft SQL server データベースサーバーを使用する方法について説明します。 DLL からの関数のインポートが使用します。 DLL は、Microsoft .NET プラットフォームと C# 言語を使用して作成します。 この記事で使用するメソッドは、マイナーな調整があり、MQL4で書かれているEAに適しています。

ディープニューラルネットワーク(その4)ニューラルネットワーク分類器のアンサンブル: バギング

本稿では、バギング構造を持つニューラルネットワークのアンサンブルを構築および訓練する方法について説明します。また、アンサンブルを構成する個々のニューラルネットワーク分類器の超パラメータ最適化の特性も特定されます。このシリーズの前の記事で得られた最適化ニューラルネットワークの品質は、作成されたニューラルネットワークのアンサンブルの品質と比較されます。アンサンブルの分類の質をさらに向上させる可能...

強化学習におけるランダム決定フォレスト

バギングを使用するランダムフォレスト(RF)は最も強力な機械学習方法の1つですが、グラジエントブースティングには若干劣ります。本稿では、市場との相互作用から得られた経験に基づいて意思決定を行う自己学習型取引システムの開発を試みます。

グラフィカルインターフェイスを備えたエキスパートアドバイザ : 機能の設定(第2部)

これは手動取引のためのマルチシンボルシグナルエキスパートアドバイザーの作成に関する記事の第2部です。私たちはすでにグラフィカルインターフェースを作成しました。この記事では、インターフェースとプログラムの機能を融合させる方法について説明します。

グラフィカルインタフェ-スを備えたエキスパ-トアドバイザ:パネルの作成(第1部)

多くのトレーダーが依然として手作業を好むという事実にもかかわらず、ここではルーティンで行う作業の自動化を完全に避けることはできないでしょう。この記事では、手動取引のためのマルチシンボルシグナルエキスパートアドバイザーの作成例を示します。

マルチモジュールEAの作成

MQLプログラミング言語によって、取引戦略のモジュール設計の概念を実装することができます。この記事では、別々にコンパイルされたファイルモジュールからなるマルチモジュールEAの作成例をご紹介します。

任意のインジケータの計算部分をEAのコードに転送する方法

インジケータコードをEAに転送する理由は様々です。しかし、このアプローチの長所と短所はどのように評価するべきでしょうか?この記事では、インジケータコードをEAに転送する技術をご紹介します。EAの動作スピードを評価するためにいくつかの実験を行いました。

選択した基準による最適化結果の可視化

この記事では、前回の記事で始まった最適化結果を扱うMQLアプリケーションの開発を続けます。今回は、グラフィカルインターフェースを介して、別の基準を指定してパラメーターを最適化した後、最良の結果の表を作成する例をご紹介します。

MetaTrader 5での複数銘柄残高グラフ

本稿では、グラフィカルインターフェイスに最後のテスト結果に基づいた複数銘柄の残高グラフと預金損失率グラフを備えたMQLアプリケーションの例を示します。

ビンスによる資金管理 MQL5 ウィザードのモジュールとしての実装

この記事は、ラルフ·ビンスによる "The Mathematics of Money Management" に基づいています。 トレードロットの最適なサイズを見つけるために使用される経験的およびパラメトリックメソッドの説明をします。 また、それらのメソッドに基づいて MQL5 ウィザードのトレーディングモジュールの実装を行います。

メタトレーダー5のカスタムニュースフィードを作成する

この記事では、ニュースの種類とまたその情報元の面でより多くのオプションを提供しています。柔軟なニュースフィードを作成する汎用性を考察します。 この記事では、web API を MetaTrader5 ターミナルと統合する方法について説明します。

高速数学的計算に基づくカスタムストラテジーテスター

この記事では、カスタムストラテジーテスターと最適化パスのカスタムアナライザーを作成する方法について説明します。 これにより、数学の計算モード、いわゆるフレームの仕組みを理解することができ、計算のカスタムデータをロードしその圧縮の効果的なアルゴリズムを使用できるようになります。 この記事は、EAの中でカスタム情報を保存する方法に興味がある方にも有意義なものになります。

チャネルブレイクアウトパターン

価格トレンドは、金融銘柄チャートで観察できる価格チャネルを形成します。現在のチャネルのブレイクアウトは、強いトレンド反転シグナルの1つです。本稿では、そのようなシグナルを見つける手順を自動化し、チャネルブレイクアウトパターンを取引戦略の作成に使用できるかどうかを確認する方法を提案します。

トレードDiNapoliレベル

この記事では、MQL5 標準ツールを使用してDiNapoliレベルでトレードするためのEAの実現を考察します。 そのパフォーマンスをテストし、最終的な結論まで導きます。

カルマンフィルタを用いた価格方向予測

トレードで成功するには、ノイズ変動と価格変動を分けることができるインジケーターが必要です。 この記事では、最も有望なデジタルフィルタ、カルマンフィルタを検討します。 フィルタを描画して使用する方法について説明します。

インジケーターへのエントリの解決

トレーダーにはさまざまな事態が発生します。 多くの場合、勝ちトレードは、負けトレードと照らし合わせながら、戦略を再構成することができます。 どちらの場合でも、既知のインジケーターとトレードを比較します。 この記事では、インジケーターを使ったトレードの比較方法を考察します。

取引戦略におけるファジー論理

本稿では、ファジーライブラリを使用して、ファジー論理を適用した簡単な取引システムの構築例を検討します。ファジー論理、遺伝的アルゴリズムおよびニューラルネットワークを組み合わせることによりシステムを改良するための変形が提案されます。

適応型相場の実用的評価法

この記事で提案するトレーディングシステムは、株価を分析するための数学的ツールです。 ディジタルフィルタリングと離散時系列のスペクトル推定を適用します。 戦略の理論的側面について説明し、テストEAを作成します。

クロスプラットフォームEA: CExpertAdvisor と CExpertAdvisors クラス

この記事では、クロスプラットフォームのEAについて扱っています。主にクラス CExpertAdvisor と CExpertAdvisors は、この記事で説明した他のすべてのコンポーネントのコンテナとして機能します。

クロスプラットフォームEA: カスタムストップ、ブレイクイーブン、トレーリング

この記事では、クロスプラットフォームEAでのカスタムストップレベルの設定方法について説明します。 また、時間の経過とともにストップレベルを設定するメソッドについても説明します。

グラフィカルインタフェースXI:標準グラフィックライブラリの統合(ビルド16)

グラフィックライブラリの科学的なグラフを作成するための新バージョン(CGraphicクラス)が最近発表されました。今回のアップデートでは、グラフィカルインターフェイス作成のために開発された当ライブラリにグラフを作成するための新しいコントロールを備えたバージョンが導入されます。さまざまな種類のデータを視覚化することがさらに簡単になりました。

クロスプラットフォームEA: ストップ

この記事では、2つのプラットフォームMetaTrader4とMetaTrader5との互換性を確保するために、EAのストップの実装について説明します。

グラフィカルインターフェイスXI:テーブルセル内のテキストエディットボックスとコンボボックス(ビルド15)

このライブラリアップデートでは、テーブルコントロール(CTableクラス)に新しいオプションが追加されます。テーブルセル内のコントロールのラインアップが拡張され、今回はテキストエディットボックスとコンボボックスが追加されます。また、このアップデートでは、実行中にMQLアプリケーションのウィンドウのイズを変更する機能も導入されています。

ユニバーサルEA: シンボルプロパティへのアクセス (その 8)

このテーマの8番目のパートは、任意のトレーディングツールへアクセスする特殊なオブジェクト CSymbol クラスの説明をします。 EAで使用する場合、このクラスはEAのプログラミングを簡素化し、その関数を拡張することができ、シンボルプロパティのセットを提供します。

グラフィカルインターフェイスXI:レンダリングされたコントロール(ビルド14.2)

ライブラリのこの新バージョンでは、すべてのコントロールが個別のOBJ_BITMAP_LABEL型のグラフィカルオブジェクトに描画されます。また、コードの最適化についても引き続き説明し、ライブラリの中核クラスの変更について説明します。

グラフィカルインターフェイスXI:ライブラリコードのリファクタリング(ビルド14.1)

ライブラリが大きくなるにつれて、コードをサイズを減らすために最適化が再び必要がです。本稿で説明するライブラリのバージョンはさらにオブジェクト指向になっており、コードの学習もさらに容易になります。読者は、最新の変更の詳細な記述によって、独自のニーズに基づいて独自にライブラリを開発できるでしょう。

クロスプラットフォームEA: タイムフィルタ

この記事では、クロスプラットフォームEAによるさまざまな時間フィルタリングメソッドの実装について説明します。 時間フィルタクラスは、特定の時間が一定の時間構成設定に該当するかどうかをチェックします。

クロスプラットフォームEA: マネーマネジメント

この記事では、クロスプラットフォームEAの マネーマネジメントメソッドの実装について説明します。 マネーマネジメントクラスは、EAによってエントリーされる次のトレードに使用するロットサイズの計算を担当します。

グラフィカルインターフェイスX:マルチラインテキストボックスでのテキスト選択(ビルド13)

本稿では、他のテキストエディタと同様に、さまざまなキーの組み合わせによってテキストを選択して選択したテキストを削除する機能を実装します。さらに、引き続きコードを最適化し、ライブラリの進化の第2段階の最終プロセスではすべてのコントロールが別々の画像(キャンバス)としてレンダリングされるため、これに向かってクラスを準備します。

Wolfe波動

このBill Wolfe氏によって提案された視覚的手法は、市場参入の瞬間と方向を特定するためのパターンを検出することを可能にし、価格目標とその到達時間を予測するのに役立ちます。本稿では、Wolfe波動を検索するジグザグに基づいた指標を作成する方法と、この指標に基づいた簡単なエキスパートアドバイザーで取引する方法について説明します。

MQL5 クックブック-ピボットトレーディングシグナル

この記事では、ピボットの反転に基づいたシグナルのクラスの開発と実装について説明します。 このクラスは、標準ライブラリを適用する戦略を形成するために使用されます。 フィルタを追加することにより、ピボット戦略を改善することができるでしょう。

グラフィカルインタフェースX: マルチラインテキストボックス内のワードラップアルゴリズム(ビルド12)

マルチラインテキストボックスの開発を続けましょう。今回の課題は、テキストがボックス幅を超えた場合には自動的にワードラップを行い、機会が生じた場合にはワードラップを取り消してテキストを前行に収めることです。

グラフィカルインターフェイスX:ソート、テーブル再構築とセル内のコントロール(ビルド11)

レンダーテーブルにデータソート、列と行の数の管理、コントロールを配置するためのテーブルのセルタイプの設定といった新しい機能を追加し続けます。

グラフィカルインターフェイスX:レンダーテーブルの更新とコード最適化(ビルド10)

レンダーテーブル(CCanvasTable)に新しい機能を補完していきます。テーブルには、ホバー時の列の強調表示;、各セルにアイコンの配列を追加する機能とそれらを切り替えるメソッド、 実行時にセルテキストを設定または変更する機能などが含まれます。

グラフィカルインタフェースX:レンダーテーブルの新機能(ビルド9)

今日までは、ライブラリの最も高度なテーブルはCTableでした。このテーブルは、OBJ_EDIT型のエディットボックスから組み立てられており、さらなる開発は難しいです。したがって、機能の最大化においては、ライブラリ開発の現段階を考慮しても、CCanvasTable型のレンダーテーブルを開発する方が賢明です。その現バージョンはまったく使えない状態ですが、この記事から始めて状況を改善していきましょう。

グラフィカルインタフェースX: マルチラインテキストボックス(ビルド8)

マルチラインテキストボックスについて説明します。OBJ_EDIT型のグラフィカルオブジェクトとは異なり、ここで説明されるバージョンには入力文字数の制限がありません。また、カーソルをマウスまたはキーを使用して移動してテキストボックスをシンプルなテキストエディタに切り替えるモードも追加されています。

グラフィカルインタフェースX:リストとテーブルの高度な管理コードの最適化(ビルド7)

ライブラリコードの最適化が必要です。それは、より規則正しく、学習のために読みやすく理解しやすくなければありません。さらに、以前に作成したコントロール(リスト、テーブル、スクロールバー)の開発が続きます。