Artículos sobre análisis de datos y estadísticas en MQL5

icon

Los artículos sobre los modelos matemáticos y leyes de probabilidades serán interesantes para muchos operadores. Es que las matemáticas han sido puestas como base de los indicadores, y el conocimiento de las estadísticas es necesario para el análisis de los resultados del trading y el desarrollo de las estrategias.

Lea sobre la lógica difusa, filtros digitales, perfil del mercado, mapas de Kohonen, gas neuronal y muchas otras herramientas que pueden ser utilizadas para el trading.

Nuevo artículo
últimas | mejores
Trabajando con las series temporales en la biblioteca DoEasy (Parte 47): Indicadores estándar de periodo y símbolo múltiples
Trabajando con las series temporales en la biblioteca DoEasy (Parte 47): Indicadores estándar de periodo y símbolo múltiples

Trabajando con las series temporales en la biblioteca DoEasy (Parte 47): Indicadores estándar de periodo y símbolo múltiples

En el presente artículo, comenzaremos a desarrollar los métodos de trabajo con los indicadores estándar, lo cual nos permitirá crear indicadores estándar de periodo y símbolo múltiples basados en las clases de la bibliotecas. Asimismo, añadiremos a las clases de las series temporales el evento "Barras Omitidas" y aligeraremos el código del programa principal, trasladando las funciones de preparación de la biblioteca de dicho programa a la clase CEngine.
preview
Aprendizaje automático y Data Science (Parte 21): Desbloqueando las redes neuronales: desmitificando los algoritmos de optimización

Aprendizaje automático y Data Science (Parte 21): Desbloqueando las redes neuronales: desmitificando los algoritmos de optimización

Sumérjase en el corazón de las redes neuronales mientras desmitificamos los algoritmos de optimización utilizados dentro de la red neuronal. En este artículo, descubra las técnicas clave que liberan todo el potencial de las redes neuronales, impulsando sus modelos a nuevas cotas de precisión y eficacia.
preview
El modelo de movimiento de precios y sus principales disposiciones (Parte 3): Cálculo de parámetros óptimos en el juego bursátil

El modelo de movimiento de precios y sus principales disposiciones (Parte 3): Cálculo de parámetros óptimos en el juego bursátil

En el marco del presente enfoque de ingeniería desarrollado por el autor, basado en la teoría de la probabilidad, se encuentran las condiciones para abrir una posición rentable, y también se calculan los valores óptimos (que maximizan las ganancias) para el stop loss y el take profit.
preview
La estacionalidad en el mercado de divisas y oportunidades para aprovecharla

La estacionalidad en el mercado de divisas y oportunidades para aprovecharla

Toda persona moderna está familiarizada con el concepto de estacionalidad, por ejemplo, todos estamos acostumbrados al aumento del precio de las verduras frescas en invierno o a la subida del precio del combustible durante las heladas severas, pero pocas personas saben que existen patrones similares en el mercado de divisas.
Trabajando con los precios y Señales en la biblioteca DoEasy (Parte 65): Colección de la profundidad de mercado y clase para trabajar con las Señales MQL5.com
Trabajando con los precios y Señales en la biblioteca DoEasy (Parte 65): Colección de la profundidad de mercado y clase para trabajar con las Señales MQL5.com

Trabajando con los precios y Señales en la biblioteca DoEasy (Parte 65): Colección de la profundidad de mercado y clase para trabajar con las Señales MQL5.com

En el presente artículo, crearemos una clase de colección de profundidad de mercado para todos los símbolos y comenzaremos a desarrollar la funcionalidad necesaria para trabajar con el servicio de señales de MQL5.com. Para ello, crearemos una clase de objeto de señal.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 46): Búferes de indicador de periodo y símbolo múltiples
Trabajando con las series temporales en la biblioteca DoEasy (Parte 46): Búferes de indicador de periodo y símbolo múltiples

Trabajando con las series temporales en la biblioteca DoEasy (Parte 46): Búferes de indicador de periodo y símbolo múltiples

En el presente artículo, mejoraremos las clases de los objetos de los búferes de indicador para trabajar en el modo multisímbolo. De esta forma, tendremos todo listo para crear en nuestros programas indicadores de periodo y símbolo múltiples. También añadiremos la funcionalidad que falta en los búferes de cálculo, lo cual nos permitirá crear indicadores estándar de periodo y símbolo múltiples.
MQL5 Market Cumple Un Año
MQL5 Market Cumple Un Año

MQL5 Market Cumple Un Año

Ha pasado un año desde el lanzamiento de ventas en el Mercado de MQL5 (MQL5 Market). Ha sido un año de trabajo duro que ha resultado en el nuevo servicio de la mayor tienda de robots de trading e indicadores técnicos para la plataforma MetaTrader 5.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 50): Indicadores estándar de período y símbolo múltiples con desplazamiento

Trabajando con las series temporales en la biblioteca DoEasy (Parte 50): Indicadores estándar de período y símbolo múltiples con desplazamiento

En el artículo de hoy, vamos a mejorar los métodos de la biblioteca para una representación correcta de los indicadores de período y símbolo múltiples cuyas líneas se muestran en el gráfico del símbolo actual con desplazamiento que se establece en los ajustes. Además, acondicionaremos el contenido dentro de los métodos de trabajo con los indicadores estándar y guardaremos el código sobrante del indicador final en la parte de la biblioteca.
preview
Algoritmos de optimización de la población: Búsqueda armónica (HS)

Algoritmos de optimización de la población: Búsqueda armónica (HS)

Hoy estudiaremos y pondremos a prueba un algoritmo de optimización muy potente, la búsqueda armónica (HS), que se inspira en el proceso de búsqueda de la armonía sonora perfecta. ¿Qué algoritmo lidera ahora mismo nuestra clasificación?
preview
El modelo de movimiento de precios y sus principales disposiciones (Parte 1): La versión del modelo más simple y sus aplicaciones

El modelo de movimiento de precios y sus principales disposiciones (Parte 1): La versión del modelo más simple y sus aplicaciones

En el presente artículo, le presentamos los fundamentos de una teoría matemáticamente rigurosa del movimiento de precios y el funcionamiento del mercado. Aún no se ha creado una teoría matemática rigurosa del movimiento de precios: solo había una serie de suposiciones, sin respaldo estadístico o teoría alguna, sobre que después de tales patrones, el precio se mueve de tal o cual manera.
Cómo visualizar la historia del comercio multidivisa en informes con formato HTML y CSV
Cómo visualizar la historia del comercio multidivisa en informes con formato HTML y CSV

Cómo visualizar la historia del comercio multidivisa en informes con formato HTML y CSV

Como sabemos, MetaTrader 5 ofrece la posibilidad de realizar simulaciones multidivisa desde su aparición. Esta función tiene mucha demanda entre la mayoría de los tráders, pero, por desgracia, no es tan universal como querríamos. En el presente artículo, ofrecemos varios programas para trazar gráficos con la ayuda de objetos gráficos usando como base la historia comercial de informes en los formatos HTML y CSV. El comercio con varios instrumentos puede analizarse paralelamente en varias subventanas, o en una sola ventana con la ayuda de la alternancia dinámica a una orden del usuario.
preview
Comprensión y uso eficaz del simulador de estrategias MQL5

Comprensión y uso eficaz del simulador de estrategias MQL5

Para los desarrolladores de MQL5 resulta imperativo dominar herramientas importantes y valiosas. Una de esas herramientas es el simulador de estrategias. El presente artículo es una guía práctica para utilizar el simulador de estrategias MQL5.
preview
Desarrollando un EA de trading desde cero (Parte 16): Acceso a los datos en la Web (II)

Desarrollando un EA de trading desde cero (Parte 16): Acceso a los datos en la Web (II)

Saber cómo introducir los datos de la Web en un EA no es tan obvio, o mejor dicho, no es tan simple que puede hacerse sin conocer y entender realmente todas las características que están presentes en MetaTrader 5.
preview
Previsión usando modelos ARIMA en MQL5

Previsión usando modelos ARIMA en MQL5

En este artículo, continuaremos el desarrollo de la clase CArima para construir modelos ARIMA añadiendo métodos de predicción intuitivos.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 06): Primeras mejoras (I)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 06): Primeras mejoras (I)

En este artículo empezaremos a estabilizar todo el sistema, porque sin eso corremos el riesgo de no poder cumplir los siguientes pasos.
preview
Características del Wizard MQL5 que debe conocer (Parte 26): Medias móviles y el exponente de Hurst

Características del Wizard MQL5 que debe conocer (Parte 26): Medias móviles y el exponente de Hurst

El exponente de Hurst es una medida del grado de autocorrelación de una serie temporal a largo plazo. Se entiende que capta las propiedades a largo plazo de una serie temporal y, por tanto, tiene cierto peso en el análisis de series temporales, incluso fuera de las series temporales económicas/financieras. Sin embargo, nos centramos en sus posibles beneficios para los operadores, examinando cómo esta métrica podría combinarse con las medias móviles para crear una señal potencialmente sólida.
preview
Redes neuronales: así de sencillo (Parte 14): Clusterización de datos

Redes neuronales: así de sencillo (Parte 14): Clusterización de datos

Lo confieso: ha pasado más de un año desde que publiqué el último artículo. En tanto tiempo, me ha sido posible repensar mucho, desarrollar nuevos enfoques. Y en este nuevo artículo, me gustaría alejarme un poco del método anteriormente usado de aprendizaje supervisado, y sugerir una pequeña inmersión en los algoritmos de aprendizaje no supervisado. En particular, vamos a analizar uno de los algoritmos de clusterización, las k-medias.
Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte IX): Compatibilidad con MQL4 - Preparando los datos
Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte IX): Compatibilidad con MQL4 - Preparando los datos

Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte IX): Compatibilidad con MQL4 - Preparando los datos

En artículos anteriores, comenzamos a crear una gran biblioteca multiplataforma, cuyo cometido es simplificar la escritura de programas para las plataformas MetaTrader 5 y MetaTrader 4. En la novena parte, hemos creado una clase que monitoreará los eventos de modificación de las órdenes y posiciones de mercado. En el presente artículo, comenzaremos a desarrollar la biblioteca para hacerla totalmente compatible con MQL4.
preview
Optimización paralela con el método de enjambre de partículas (Particle Swarm Optimization)

Optimización paralela con el método de enjambre de partículas (Particle Swarm Optimization)

El presente artículo describimos un modo de optimización rápida usando el método de enjambre de partículas, y presentamos una implementación en MQL lista para utilizar tanto en el modo de flujo único dentro de un EA, como en el modo paralelo de flujo múltiples como un complemento ejecutado en los agentes locales del simulador.
preview
Aproximación por fuerza bruta a la búsqueda de patrones (Parte II): Nuevos horizontes

Aproximación por fuerza bruta a la búsqueda de patrones (Parte II): Nuevos horizontes

Este artículo prosigue con el tema de la fuerza bruta, ofreciendo al algoritmo de nuestro programa nuevas posibilidades para el análisis de mercado, y acelerando la velocidad de análisis y la calidad de los resultados finales, lo cual brinda un punto de vista de máxima calidad sobre los patrones globales en el marco de este enfoque.
preview
Redes neuronales: así de sencillo (Parte 27): Aprendizaje Q profundo (DQN)

Redes neuronales: así de sencillo (Parte 27): Aprendizaje Q profundo (DQN)

Seguimos explorando el aprendizaje por refuerzo. En este artículo, hablaremos del método de aprendizaje Q profundo o deep Q-learning. El uso de este método permitió al equipo de DeepMind crear un modelo capaz de superar a los humanos jugando a los videojuegos de ordenador de Atari. Nos parece útil evaluar el potencial de esta tecnología para las tareas comerciales.
preview
Aprendizaje automático y Data Science (Parte 28): Predicción de múltiples futuros para el EURUSD mediante IA

Aprendizaje automático y Data Science (Parte 28): Predicción de múltiples futuros para el EURUSD mediante IA

Es una práctica común que muchos modelos de Inteligencia Artificial predigan un único valor futuro. Sin embargo, en este artículo profundizaremos en la poderosa técnica de utilizar modelos de aprendizaje automático para predecir múltiples valores futuros. Este enfoque, conocido como pronóstico de múltiples pasos, nos permite predecir no sólo el precio de cierre de mañana, sino también el de pasado mañana y más allá. Al dominar la previsión en varios pasos, los operadores y los científicos de datos pueden obtener conocimientos más profundos y tomar decisiones más informadas, mejorando significativamente sus capacidades de predicción y planificación estratégica.
preview
Ejemplo de optimización estocástica y control óptimo

Ejemplo de optimización estocástica y control óptimo

Este Asesor Experto, llamado SMOC, que significa Stochastic Model Optimal Control (Modelo Estocástico de Control Óptimo), es un ejemplo sencillo de un avanzado sistema algorítmico de trading para MetaTrader 5. Utiliza una combinación de indicadores técnicos, control predictivo de modelos y gestión dinámica de riesgos para tomar decisiones comerciales. El EA incorpora parámetros adaptativos, dimensionamiento de posiciones basado en la volatilidad y análisis de tendencias para optimizar su rendimiento en diferentes condiciones de mercado.
preview
Algoritmos de optimización de la población: Algoritmo de enjambre de aves (Bird Swarm Algorithm, BSA)

Algoritmos de optimización de la población: Algoritmo de enjambre de aves (Bird Swarm Algorithm, BSA)

El artículo analiza un algoritmo BSA basado en el comportamiento de las aves, que se inspira en las interacciones colectivas de bandadas de aves en la naturaleza. Las diferentes estrategias de búsqueda de individuos en el BSA, que incluyen el cambio entre el comportamiento de vuelo, la vigilancia y la búsqueda de alimento, hacen que este algoritmo sea multidimensional. El algoritmo usa los principios del comportamiento de las bandadas, la comunicación, la adaptabilidad, el liderazgo y el seguimiento de las aves para encontrar con eficacia soluciones óptimas.
preview
Algoritmos de optimización de la población: Algoritmo de búsqueda gravitacional (GSA)

Algoritmos de optimización de la población: Algoritmo de búsqueda gravitacional (GSA)

El GSA es un algoritmo de optimización basado en la población e inspirado en la naturaleza no viviente. La simulación de alta fidelidad de la interacción entre los cuerpos físicos, gracias a la ley de la gravedad de Newton presente en el algoritmo, permite observar la mágica danza de los sistemas planetarios y los cúmulos galácticos, capaz de hipnotizar en la animación. Hoy vamos a analizar uno de los algoritmos de optimización más interesantes y originales. Adjuntamos un simulador de movimiento de objetos espaciales.
Enfoque ideal sobre el desarrollo y el análisis de sistemas comerciales
Enfoque ideal sobre el desarrollo y el análisis de sistemas comerciales

Enfoque ideal sobre el desarrollo y el análisis de sistemas comerciales

En el presente artículo, trataremos de mostrar con qué criterio elegir un sistema o señal para invertir nuestro dinero, además de cuál es el mejor enfoque para desarrollar sistemas comerciales y por qué este tema es tan importante en el comercio en fórex.
Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte VIII): Eventos de modificación de órdenes y posiciones
Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte VIII): Eventos de modificación de órdenes y posiciones

Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte VIII): Eventos de modificación de órdenes y posiciones

En artículos anteriores, comenzamos a crear una gran biblioteca multiplataforma, cuyo cometido es simplificar la escritura de programas para las plataformas MetaTrader 5 y MetaTrader 4. En el séptimo artículo, añadimos el seguimiento de los eventos de activación de órdenes StopLimit y preparamos la funcionalidad para monitorear el resto de eventos que tienen lugar con las órdenes y posiciones. En el presente artículo, vamos a crear una clase que monitoreará los eventos de modificación de las órdenes y posiciones de mercado.
preview
Regresiones espurias en Python

Regresiones espurias en Python

Las regresiones espurias ocurren cuando dos series de tiempo exhiben un alto grado de correlación puramente por casualidad, lo que conduce a resultados engañosos en el análisis de regresión. En tales casos, aunque las variables parezcan estar relacionadas, la correlación es casual y el modelo puede no ser confiable.
preview
Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz

Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz

En este artículo, automatizaremos las estrategias comerciales con la estrategia Parabolic SAR en MQL5: Creación de un asesor experto eficaz. El EA realizará operaciones basadas en las tendencias identificadas por el indicador Parabolic SAR.
Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com
Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com

Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com

En este artículo, crearemos una clase de colección de señales del Servicio de señales de MQL5.com con funciones para gestionar las señales suscritas, y también modificaremos la clase del objeto de instantánea de la profundidad de mercado para mostrar el volumen total de la profundidad de mercado de compra y venta.
preview
Aprendizaje automático y data science (Parte 04): Predicción de una caída bursátil

Aprendizaje automático y data science (Parte 04): Predicción de una caída bursátil

En este artículo, intentaremos usar nuestro modelo logístico para predecir una caída del mercado de valores según las principales acciones de la economía estadounidense: NETFLIX y APPLE. Analizaremos estas acciones, y también usaremos la información sobre las anteriores caídas del mercado en 2019 y 2020. Veamos cómo funcionará nuestro modelo en las poco favorables condiciones actuales.
preview
Redes neuronales: así de sencillo (Parte 20): Autocodificadores

Redes neuronales: así de sencillo (Parte 20): Autocodificadores

Continuamos analizando los algoritmos de aprendizaje no supervisado. El lector podría preguntarse sobre la relevancia de las publicaciones recientes en el tema de las redes neuronales. En este nuevo artículo, retomaremos el uso de las redes neuronales.
preview
Redes neuronales: así de sencillo (Parte 21): Autocodificadores variacionales (VAE)

Redes neuronales: así de sencillo (Parte 21): Autocodificadores variacionales (VAE)

En el anterior artículo, vimos el algoritmo del autocodificador. Como cualquier otro algoritmo, tiene ventajas y desventajas. En la implementación original, el autocodificador se encarga de dividir los objetos de la muestra de entrenamiento tanto como sea posible. Y en este artículo, en cambio, hablaremos de cómo solucionar algunas de sus deficiencias.
Otras clases en la biblioteca DoEasy (Parte 72): Seguimiento y registro de parámetros de los objetos de gráfico en la colección
Otras clases en la biblioteca DoEasy (Parte 72): Seguimiento y registro de parámetros de los objetos de gráfico en la colección

Otras clases en la biblioteca DoEasy (Parte 72): Seguimiento y registro de parámetros de los objetos de gráfico en la colección

En el presente artículo, finalizaremos el trabajo con las clases de los objetos de gráfico y sus colecciones. Implementaremos el seguimiento automático del cambio de las propiedades de los gráficos y sus ventanas, y también el almacenamiento de los parámetros en las propiedades del objeto. Estas mejoras nos permitirán en el futuro crear una funcionalidad de eventos para la colección de gráficos al completo.
preview
Algoritmos de optimización de la población: Algoritmo de siembra y crecimiento de árboles (Saplings Sowing and Growing up — SSG)

Algoritmos de optimización de la población: Algoritmo de siembra y crecimiento de árboles (Saplings Sowing and Growing up — SSG)

El algoritmo de siembra y crecimiento de árboles (SSG) está inspirado en uno de los organismos más resistentes del planeta, que es un ejemplo notable de supervivencia en una amplia variedad de condiciones.
preview
Algoritmos de optimización de la población: Algoritmo de recocido simulado (Simulated Annealing, SA). Parte I

Algoritmos de optimización de la población: Algoritmo de recocido simulado (Simulated Annealing, SA). Parte I

El algoritmo de recocido simulado es una metaheurística inspirada en el proceso de recocido de los metales. En nuestro artículo, realizaremos un análisis exhaustivo del algoritmo y mostraremos cómo muchas percepciones comunes y mitos que rodean a este método de optimización (el más popular y conocido) pueden ser incorrectos e incompletos. Anuncio de la segunda parte del artículo: "¡Conozca el algoritmo de recocido Isotrópico Simulado (Simulated Isotropic Annealing, SIA) del propio autor!"
Trabajando con las series temporales en la biblioteca DoEasy (Parte 45): Búferes de indicador de periodo múltiple
Trabajando con las series temporales en la biblioteca DoEasy (Parte 45): Búferes de indicador de periodo múltiple

Trabajando con las series temporales en la biblioteca DoEasy (Parte 45): Búferes de indicador de periodo múltiple

En el artículo, comenzaremos a mejorar los objetos de búfer de indicador y la clase de colección de búferes para trabajar en los modos de periodo y símbolo múltiples. Asimismo, analizaremos el funcionamiento de los objetos de búfer para obtener y mostrar los datos desde cualquier marco temporal en el gráfico actual del símbolo actual.
preview
Algoritmos de optimización de la población: Búsqueda de bancos de peces (Fish School Search — FSS)

Algoritmos de optimización de la población: Búsqueda de bancos de peces (Fish School Search — FSS)

La búsqueda de bancos de peces (FSS) es un nuevo algoritmo de optimización moderno inspirado en el comportamiento de los peces en un banco, la mayoría de los cuales, hasta el 80%, nadan en una comunidad organizada de parientes. Se ha demostrado que las asociaciones de peces juegan un papel importante a la hora de buscar alimento y protegerse contra los depredadores de forma eficiente.
preview
Redes neuronales: así de sencillo (Parte 16): Uso práctico de la clusterización

Redes neuronales: así de sencillo (Parte 16): Uso práctico de la clusterización

En el artículo anterior, creamos una clase para la clusterización de datos. En este artículo, queremos compartir con el lector diferentes opciones de uso de los resultados obtenidos para resolver problemas prácticos en el trading.
preview
Gradient boosting en el aprendizaje de máquinas transductivo y activo

Gradient boosting en el aprendizaje de máquinas transductivo y activo

En este artículo, el lector podrá familiarizarse con los métodos de aprendizaje automático activo basados en datos reales, descubriendo además cuáles son sus ventajas y desventajas. Puede que estos métodos terminen por ocupar un lugar en su arsenal de modelos de aprendizaje automático. El término transducción fue introducido por Vladímir Naúmovich Vápnik, el inventor de la máquina de vectores de soporte (SVM).