Artículos sobre análisis de datos y estadísticas en MQL5

icon

Los artículos sobre los modelos matemáticos y leyes de probabilidades serán interesantes para muchos operadores. Es que las matemáticas han sido puestas como base de los indicadores, y el conocimiento de las estadísticas es necesario para el análisis de los resultados del trading y el desarrollo de las estrategias.

Lea sobre la lógica difusa, filtros digitales, perfil del mercado, mapas de Kohonen, gas neuronal y muchas otras herramientas que pueden ser utilizadas para el trading.

Nuevo artículo
últimas | mejores
preview
Teoría de categorías en MQL5 (Parte 19): Inducción cuadrática de la naturalidad

Teoría de categorías en MQL5 (Parte 19): Inducción cuadrática de la naturalidad

Continuamos analizando las transformaciones naturales considerando la inducción cuadrática de la naturalidad. Pequeñas restricciones en la implementación de las capacidades multidivisa para los asesores ensamblados usando el wizard MQL5 significan que estamos demostrando nuestras capacidades en la clasificación de datos usando un script. Las principales áreas de aplicación son la clasificación de las variaciones de precios y, como consecuencia, su previsión.
preview
Operar con noticias de manera sencilla (Parte 1): Creando una base de datos

Operar con noticias de manera sencilla (Parte 1): Creando una base de datos

Operar con noticias puede ser complicado y abrumador, en este artículo repasaremos los pasos para obtener datos de noticias. Además, conoceremos el calendario económico de MQL5 y lo que ofrece.
preview
Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo

Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo

En nuestra serie sobre la integración de MQL5 con paquetes de procesamiento de datos, nos adentramos en la poderosa combinación del aprendizaje automático y el análisis predictivo. Exploraremos cómo conectar a la perfección MQL5 con librerías populares de aprendizaje automático, para habilitar sofisticados modelos predictivos para los mercados financieros.
preview
Desarrollo de un sistema de repetición (Parte 33): Sistema de órdenes (II)

Desarrollo de un sistema de repetición (Parte 33): Sistema de órdenes (II)

Vamos a continuar el desarrollo del sistema de órdenes, pero verás que haremos una reutilización masiva de cosas ya vistas en otros artículos. Aun así, tendremos una pequeña recompensa en este artículo. Desarrollaremos, en primer lugar, un sistema que pueda ser operado junto al servidor de negociación real, ya sea usando una cuenta demo o una cuenta real. Haremos uso masivo y extensivo de la plataforma MetaTrader 5 para proporcionarnos todo el soporte que necesitaremos en este inicio de viaje.
preview
Marcado de datos en el análisis de series temporales (Parte 1):Creamos un conjunto de datos con marcadores de tendencia utilizando el gráfico de un asesor

Marcado de datos en el análisis de series temporales (Parte 1):Creamos un conjunto de datos con marcadores de tendencia utilizando el gráfico de un asesor

En esta serie de artículos, presentaremos varias técnicas de etiquetado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El etiquetado específico de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorar la precisión del modelo e incluso ayudarle a dar un salto cualitativo.
preview
Teoría de Categorías en MQL5 (Parte 23): Otra mirada a la media móvil exponencial doble

Teoría de Categorías en MQL5 (Parte 23): Otra mirada a la media móvil exponencial doble

En este artículo, seguiremos analizando desde un nuevo ángulo los indicadores comerciales más populares. Vamos a procesar una composición horizontal de transformaciones naturales. El mejor indicador para ello será la media móvil exponencial doble (Double Exponential Moving Average, DEMA).
preview
Características del Wizard MQL5 que debe conocer (Parte 25): Pruebas y operaciones en múltiples marcos temporales

Características del Wizard MQL5 que debe conocer (Parte 25): Pruebas y operaciones en múltiples marcos temporales

Las estrategias que se basan en múltiples marcos de tiempo no se pueden probar en los Asesores Expertos ensamblados por defecto debido a la arquitectura de código MQL5 utilizada en las clases de ensamblaje. Exploramos una posible solución a esta limitación para las estrategias que buscan utilizar múltiples marcos temporales en un estudio de caso con la media móvil cuadrática.
preview
Optimización de carteras en Python y MQL5

Optimización de carteras en Python y MQL5

Este artículo explora técnicas avanzadas de optimización de cartera utilizando Python y MQL5 con MetaTrader 5. Demuestra cómo desarrollar algoritmos para el análisis de datos, la asignación de activos y la generación de señales comerciales, enfatizando la importancia de la toma de decisiones basada en datos en la gestión financiera moderna y la mitigación de riesgos.
Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos
Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos

Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos

Dado que el programa puede utilizar varios símbolos, entonces, es necesario crear su propia lista para cada uno de estos símbolos. En este artículo, vamos a combinar estas listas en una colección de datos de tick. En realidad, se trata de una lista común a base de la clase de la matriz dinámica de punteros a las instancias de la clase CObject y sus herederos de la Biblioteca estándar.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte IX): Organización del código (I)

Creación de un Panel de administración de operaciones en MQL5 (Parte IX): Organización del código (I)

Este debate profundiza en los retos que se plantean al trabajar con grandes bases de código. Exploraremos las mejores prácticas para la organización del código en MQL5 e implementaremos un enfoque práctico para mejorar la legibilidad y la escalabilidad del código fuente de nuestro Panel de administración de operaciones. Además, nuestro objetivo es desarrollar componentes de código reutilizables que puedan beneficiar a otros desarrolladores en el desarrollo de sus algoritmos. Sigue leyendo y únete a la conversación.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 05): Vistas previas

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 05): Vistas previas

Hemos logrado desarrollar una forma de ejecutar la repetición de mercado de manera bastante realista y aceptable. Ahora, vamos a continuar con nuestro proyecto y agregar datos para mejorar el comportamiento de la repetición.
preview
Redes neuronales: así de sencillo (Parte 40): Enfoques para utilizar Go-Explore con una gran cantidad de datos

Redes neuronales: así de sencillo (Parte 40): Enfoques para utilizar Go-Explore con una gran cantidad de datos

Este artículo analizará el uso del algoritmo Go-Explore durante un largo periodo de aprendizaje, ya que la estrategia de elección aleatoria puede no conducir a una pasada rentable a medida que aumenta el tiempo de entrenamiento.
preview
Métodos de optimización de la biblioteca ALGLIB (Parte I)

Métodos de optimización de la biblioteca ALGLIB (Parte I)

En este artículo nos familiarizaremos con los métodos de optimización de la biblioteca ALGLIB para MQL5. El artículo incluye ejemplos sencillos e ilustrativos de la aplicación de ALGLIB para resolver problemas de optimización, lo que hará que el proceso de dominio de los métodos resulte lo más accesible posible. Asimismo, analizaremos con detalle la conectividad de algoritmos como BLEIC, L-BFGS y NS y resolveremos un sencillo problema de prueba basado en ellos.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 13): Nacimiento del SIMULADOR (III)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 13): Nacimiento del SIMULADOR (III)

Aquí optimizaremos un poco las cosas para facilitar lo que haremos en el próximo artículo. Y también te explicaré cómo puedes visualizar lo que está generando el simulador en términos de aleatoriedad.
preview
Desarrollo de un sistema de repetición (Parte 40): Inicio de la segunda fase (I)

Desarrollo de un sistema de repetición (Parte 40): Inicio de la segunda fase (I)

Esta es la nueva fase del sistema de repetición/simulación. En esta etapa, la conversación será realmente una conversación, y el contenido se volverá bastante denso. Les insto a leer el artículo con atención y a utilizar siempre las referencias que se proporcionen. Esto les ayudará a comprender mejor lo que se les está explicando.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 14): Nacimiento del SIMULADOR (IV)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 14): Nacimiento del SIMULADOR (IV)

En este artículo, continuaremos con la fase de desarrollo del simulador. Sin embargo, ahora veremos cómo crear efectivamente un movimiento del tipo "RANDOM WALK" (paseo aleatorio). Este tipo de movimiento es bastante intrigante, ya que sirve de base para todo lo que sucede en el mercado de capitales. Además, comenzarás a comprender algunos conceptos esenciales para quienes realizan análisis de mercado.
preview
Desarrollo de un sistema de repetición (Parte 37): Pavimentando el terreno (I)

Desarrollo de un sistema de repetición (Parte 37): Pavimentando el terreno (I)

En este artículo, vamos a empezar a hacer algo que ojalá hubiera hecho hace mucho más tiempo. Sin embargo, debido a la falta de "terreno firme", no me sentía seguro para presentarlo públicamente. Ahora, tengo las bases para poder hacer lo que vamos a empezar a hacer a partir de ahora. Es una buena idea centrarse al máximo en comprender el contenido de este artículo, y no lo digo para que lo leas por leer. Quiero y necesito recalcar que, si no entiendes este artículo en concreto, puedes abandonar por completo cualquier esperanza de comprender el contenido de los siguientes.
preview
Desarrollo de un sistema de repetición (Parte 39): Pavimentando el terreno (II)

Desarrollo de un sistema de repetición (Parte 39): Pavimentando el terreno (II)

Antes de comenzar la segunda fase del desarrollo, es necesario reforzar algunas ideas. Entonces, ¿sabes cómo forzar al MQL5 a hacer lo que es necesario? ¿Has intentado ir más allá de lo que informa la documentación? Si no, prepárate. Porque empezaré a hacer cosas mucho más allá de lo que la mayoría hace normalmente.
preview
Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit

Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit

Hoy hemos intentado construir un experto comercial para predecir las cotizaciones de los tipos de cambio. El algoritmo se basa en modelos de clasificación clásicos: la regresión logística y probit. Como filtro para las señales comerciales, hemos utilizado el criterio de la razón de verosimilitud.
preview
De novato a experto: depuración colaborativa en MQL5

De novato a experto: depuración colaborativa en MQL5

La resolución de problemas puede establecer una rutina concisa para dominar habilidades complejas, como la programación en MQL5. Este enfoque le permite concentrarse en la resolución de problemas al tiempo que desarrolla sus capacidades. Cuantos más problemas abordes, más conocimientos avanzados se transferirán a tu cerebro. Personalmente, creo que la depuración es la forma más efectiva de dominar la programación. Hoy repasaremos el proceso de limpieza de código y analizaremos las mejores técnicas para transformar un programa desordenado en uno limpio y funcional. Lea este artículo y descubra información valiosa.
preview
Ingeniería de características con Python y MQL5 (Parte I): Predicción de medias móviles para modelos de IA de largo plazo

Ingeniería de características con Python y MQL5 (Parte I): Predicción de medias móviles para modelos de IA de largo plazo

Las medias móviles son, con diferencia, los mejores indicadores para que nuestros modelos de IA realicen predicciones. Sin embargo, podemos mejorar aún más nuestra precisión transformando cuidadosamente nuestros datos. Este artículo le mostrará cómo puede crear modelos de IA capaces de realizar previsiones a más largo plazo que las que realiza actualmente sin que ello suponga una disminución significativa de su nivel de precisión. Es realmente sorprendente lo útiles que son las medias móviles.
preview
Desarrollo de un sistema de repetición (Parte 78): Un nuevo Chart Trade (V)

Desarrollo de un sistema de repetición (Parte 78): Un nuevo Chart Trade (V)

En este artículo, veremos cómo deberemos implementar la parte del receptor. Es decir, aquí implementaremos una versión del Asesor Experto, solo para probar y aprender cómo funciona la comunicación vía protocolo. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
preview
Desarrollo de un sistema de repetición (Parte 36): Haciendo retoques (II)

Desarrollo de un sistema de repetición (Parte 36): Haciendo retoques (II)

Una de las cosas que más nos puede complicar la vida como programadores es el hecho de suponer cosas. En este artículo, te mostraré los peligros de hacer suposiciones: tanto en la parte de programación MQL5, donde se asume que un tipo tendrá un tamaño determinado, como cuando se utiliza MetaTrader 5, donde se asume que los diferentes servidores funcionan de la misma manera.
preview
Aprendizaje automático y Data Science (Parte 20): Elección entre LDA y PCA en tareas de trading algorítmico en MQL5

Aprendizaje automático y Data Science (Parte 20): Elección entre LDA y PCA en tareas de trading algorítmico en MQL5

En este artículo analizaremos los métodos de reducción de la dimensionalidad y su aplicación en el entorno comercial MQL5. En concreto, exploraremos los matices del análisis discriminante lineal (LDA) y el análisis de componentes principales (PCA) y analizaremos su impacto en el desarrollo de estrategias y el análisis de mercados.
preview
Teoría de categorías en MQL5 (Parte 15): Funtores con grafos

Teoría de categorías en MQL5 (Parte 15): Funtores con grafos

El artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5, analizando los funtores como un puente entre grafos y conjuntos. Volveremos nuevamente a los datos del calendario y, a pesar de sus limitaciones en el uso de un simulador de estrategias, justificaremos el uso de funtores para predecir la volatilidad mediante la correlación.
preview
Aprendizaje automático y Data Science (Parte 32): Mantener actualizados los modelos de IA, aprendizaje en línea

Aprendizaje automático y Data Science (Parte 32): Mantener actualizados los modelos de IA, aprendizaje en línea

En el cambiante mundo del comercio, adaptarse a los cambios del mercado no es solo una opción, es una necesidad. Cada día surgen nuevos patrones y tendencias, lo que dificulta que incluso los modelos de aprendizaje automático más avanzados sigan siendo eficaces ante condiciones en constante evolución. En este artículo, exploraremos cómo mantener tus modelos relevantes y receptivos a los nuevos datos del mercado mediante el reentrenamiento automático.
preview
Teoría de categorías en MQL5 (Parte 2)

Teoría de categorías en MQL5 (Parte 2)

La teoría de categorías es una rama diversa y en expansión de las matemáticas, relativamente inexplorada aún en la comunidad MQL5. Esta serie de artículos tiene como objetivo destacar algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
preview
Algoritmos de optimización de la población: Evolución de grupos sociales (Evolution of Social Groups, ESG)

Algoritmos de optimización de la población: Evolución de grupos sociales (Evolution of Social Groups, ESG)

En este artículo analizaremos el principio de construcción de algoritmos multipoblacionales y como ejemplo de este tipo de algoritmos consideraremos la evolución de grupos sociales (ESG), un nuevo algoritmo de autor. Así, analizaremos los conceptos básicos, los mecanismos de interacción con la población y las ventajas de este algoritmo, y revisaremos su rendimiento en problemas de optimización.
preview
Modelos de regresión no lineal en la bolsa de valores

Modelos de regresión no lineal en la bolsa de valores

Modelos de regresión no lineal en la bolsa de valores: ¿Es posible predecir los mercados financieros? Consideremos la creación de un modelo para pronosticar precios para EURUSD y crear dos robots basados en él: en Python y MQL5.
preview
Teoría de categorías en MQL5 (Parte 3)

Teoría de categorías en MQL5 (Parte 3)

La teoría de categorías es una rama diversa y en expansión de las matemáticas, relativamente inexplorada aún en la comunidad MQL5. Esta serie de artículos tiene como objetivo destacar algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
preview
Desarrollo de un sistema de repetición (Parte 29): Proyecto Expert Advisor — Clase C_Mouse (III)

Desarrollo de un sistema de repetición (Parte 29): Proyecto Expert Advisor — Clase C_Mouse (III)

Ahora que hemos mejorado la clase C_Mouse, podemos concentrarnos en crear una clase destinada a establecer una base totalmente nueva de estudios. Como mencioné al inicio del artículo, no utilizaremos herencia o polimorfismo para crear esta nueva clase. En cambio, vamos a modificar, o mejor, agregar nuevos objetos a la línea de precio. Esto es lo que haremos en este primer momento, y en el próximo artículo, mostraré cómo cambiar los estudios. Pero, realizaremos esto sin cambiar el código de la clase C_Mouse. Reconozco que, en la práctica, esto sería más fácilmente logrado mediante herencia o polimorfismo. No obstante, existen otras técnicas para alcanzar el mismo resultado.
preview
Aprendizaje automático y Data Science (Parte 19): Potencie sus modelos de IA con AdaBoost

Aprendizaje automático y Data Science (Parte 19): Potencie sus modelos de IA con AdaBoost

AdaBoost, un potente algoritmo de refuerzo diseñado para elevar el rendimiento de sus modelos de IA. AdaBoost, abreviatura de Adaptive Boosting (refuerzo adaptativo), es una sofisticada técnica de aprendizaje por conjuntos que integra a la perfección los aprendices débiles, potenciando su fuerza predictiva colectiva.
preview
Algoritmo de cerradura de código (Сode Lock Algorithm, CLA)

Algoritmo de cerradura de código (Сode Lock Algorithm, CLA)

En este artículo repensaremos las cerraduras de código, transformándolas de mecanismos de protección en herramientas para resolver problemas complejos de optimización. Descubra el mundo de las cerraduras de código, no como simples dispositivos de seguridad, sino como inspiración para un nuevo enfoque de la optimización. Hoy crearemos toda una población de "cerraduras" en la que cada cerradura representará una solución única a un problema. A continuación, desarrollaremos un algoritmo que "forzará" estas cerraduras y hallará soluciones óptimas en ámbitos que van desde el aprendizaje automático hasta el desarrollo de sistemas comerciales.
preview
Operar con noticias de manera sencilla (Parte 6): Ejecución de operaciones (III)

Operar con noticias de manera sencilla (Parte 6): Ejecución de operaciones (III)

En este artículo se implementará la filtración de noticias para eventos de noticias individuales basándose en sus identificadores. Además, se mejorarán las consultas SQL anteriores para proporcionar información adicional o reducir el tiempo de ejecución de la consulta. Además, se hará funcional el código creado en los artículos anteriores.
preview
Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)

Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)

Vamos a crear algo más interesante. El código que mostré antes quedará completamente obsoleto. No quiero arruinar la sorpresa. Sigue el artículo para entender mejor. Desde el inicio de esta secuencia sobre cómo desarrollar un sistema de repetición/simulación, he dicho que la idea es usar la plataforma MetaTrader 5 de manera idéntica, tanto en el sistema que estamos desarrollando como en el mercado real. Es importante que esto se haga de manera adecuada. No querrás entrenar y aprender a luchar usando determinadas herramientas y en el momento de la pelea tener que usar otras.
preview
Características del Wizard MQL5 que debe conocer (Parte 30): Normalización por lotes en el aprendizaje automático

Características del Wizard MQL5 que debe conocer (Parte 30): Normalización por lotes en el aprendizaje automático

La normalización por lotes es el preprocesamiento de datos antes de introducirlos en un algoritmo de aprendizaje automático, como una red neuronal. Esto siempre se hace teniendo en cuenta el tipo de activación que utilizará el algoritmo. Por lo tanto, exploramos los diferentes enfoques que se pueden adoptar para aprovechar los beneficios de esto, con la ayuda de un Asesor Experto ensamblado por un asistente.
preview
Integración de MQL5 con paquetes de procesamiento de datos (Parte 1): Análisis avanzado de datos y procesamiento estadístico

Integración de MQL5 con paquetes de procesamiento de datos (Parte 1): Análisis avanzado de datos y procesamiento estadístico

La integración permite un flujo de trabajo continuo en el que los datos financieros sin procesar de MQL5 se pueden importar a paquetes de procesamiento de datos como Jupyter Lab para realizar análisis avanzados que incluyen pruebas estadísticas.
preview
Desarrollo de un sistema de repetición (Parte 27): Proyecto Expert Advisor — Clase C_Mouse (I)

Desarrollo de un sistema de repetición (Parte 27): Proyecto Expert Advisor — Clase C_Mouse (I)

En este artículo, daremos vida a la clase C_Mouse. Está diseñada para permitir programar al más alto nivel posible. Sin embargo, hablar de programar a niveles altos o bajos no está relacionado con incluir palabrotas o jerga en el código. Todo lo contrario. Cuando mencionamos programación de alto o bajo nivel, nos referimos a lo fácil o difícil que es para otro programador entender el código.
preview
Teoría de Categorías en MQL5 (Parte 6): Productos fibrados monomórficos y coproductos fibrados epimórficos

Teoría de Categorías en MQL5 (Parte 6): Productos fibrados monomórficos y coproductos fibrados epimórficos

La teoría de categorías es un apartado diverso y en expansión de las matemáticas, que solo recientemente ha comenzado a ser trabajado por la comunidad MQL5. Esta serie de artículos tiene por objetivo repasar algunos de sus conceptos para crear una biblioteca abierta y seguir usando este maravilloso apartado en la creación de estrategias comerciales.
preview
Simulación de mercado (Parte 06): Transfiriendo información desde MetaTrader 5 hacia Excel

Simulación de mercado (Parte 06): Transfiriendo información desde MetaTrader 5 hacia Excel

A muchas personas, especialmente a los no programadores, les resulta muy difícil transferir información entre MetaTrader 5 y otros programas. Uno de esos programas es Excel. Muchos utilizan Excel para gestionar y controlar sus riesgos, ya que es un programa muy bueno y fácil de aprender, incluso para quienes no son programadores de VBA. A continuación, voy a mostrar cómo establecer la comunicación entre MetaTrader 5 y Excel (un método muy sencillo).