Desarrollo de un sistema de repetición (Parte 38): Pavimentando el terreno (II)
Muchas personas que se hacen llamar programadores de MQL5 no tienen los conocimientos básicos que presentaré en este artículo. Muchos consideran que MQL5 es limitado; sin embargo, todo se debe a la falta de conocimientos. Así que no te avergüences de no saber. Avergüénzate, en cambio, de no preguntar. El simple hecho de obligar a MetaTrader 5 a no permitir que un indicador se duplique, en ningún caso nos da los medios para realizar una comunicación bidireccional entre el indicador y el Expert Advisor. Todavía estamos muy lejos de esto. No obstante, el hecho de que el indicador no se duplique en el gráfico nos da cierta tranquilidad.
Teoría de Categorías en MQL5 (Parte 23): Otra mirada a la media móvil exponencial doble
En este artículo, seguiremos analizando desde un nuevo ángulo los indicadores comerciales más populares. Vamos a procesar una composición horizontal de transformaciones naturales. El mejor indicador para ello será la media móvil exponencial doble (Double Exponential Moving Average, DEMA).
Aprendizaje automático y Data Science (Parte 17): ¿Crece el dinero en los árboles? Bosques aleatorios en el mercado Fórex
Este artículo le presentará los secretos de la alquimia algorítmica, introduciéndole con precisión las particularidades de los paisajes financieros. Asimismo, aprenderá cómo los bosques aleatorios transforman los datos en predicciones y le servirán de ayuda al navegar por las complejidades de los mercados financieros. Intentaremos identificar el papel de los bosques aleatorios en los datos financieros y comprobaremos si pueden ayudar a aumentar los beneficios.
Algoritmo de evolución del caparazón de tortuga (Turtle Shell Evolution Algorithm, TSEA)
Hoy hablaremos sobre un algoritmo de optimización único inspirado en la evolución del caparazón de las tortugas. El algoritmo TSEA emula la formación gradual de los sectores de piel queratinizada que representan soluciones óptimas a un problema. Las mejores soluciones se vuelven más "duras" y se encuentran más cerca de la superficie exterior, mientras que las menos exitosas permanecen "blandas" y se hallan en el interior. El algoritmo utiliza la clusterización de soluciones según su calidad y distancia, lo cual permite conservar las opciones menos acertadas y aporta flexibilidad y adaptabilidad.
Operar con noticias de manera sencilla (Parte 1): Creando una base de datos
Operar con noticias puede ser complicado y abrumador, en este artículo repasaremos los pasos para obtener datos de noticias. Además, conoceremos el calendario económico de MQL5 y lo que ofrece.
Marcado de datos en el análisis de series temporales (Parte 1):Creamos un conjunto de datos con marcadores de tendencia utilizando el gráfico de un asesor
En esta serie de artículos, presentaremos varias técnicas de etiquetado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El etiquetado específico de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorar la precisión del modelo e incluso ayudarle a dar un salto cualitativo.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 17): Ticks y más ticks (I)
Aquí vamos a empezar a ver cómo implementar algo realmente interesante y curioso. Pero al mismo tiempo, es extremadamente complicado debido a algunas cuestiones que muchos confunden. Y lo peor que puede pasar es que algunos operadores que se autodenominan profesionales no tienen idea de la importancia de estos conceptos en el mercado de capitales. Sí, a pesar de que el enfoque aquí es la programación, comprender algunas cuestiones relacionadas con las operaciones en los mercados es de suma importancia para lo que vamos a empezar a implementar aquí.
Desarrollo de un sistema de repetición (Parte 33): Sistema de órdenes (II)
Vamos a continuar el desarrollo del sistema de órdenes, pero verás que haremos una reutilización masiva de cosas ya vistas en otros artículos. Aun así, tendremos una pequeña recompensa en este artículo. Desarrollaremos, en primer lugar, un sistema que pueda ser operado junto al servidor de negociación real, ya sea usando una cuenta demo o una cuenta real. Haremos uso masivo y extensivo de la plataforma MetaTrader 5 para proporcionarnos todo el soporte que necesitaremos en este inicio de viaje.
Características del Wizard MQL5 que debe conocer (Parte 07): Dendrogramas
La clasificación de datos para el análisis y la predicción es un área muy diversa del aprendizaje automático con un gran número de enfoques y métodos. En este artículo analizaremos uno de estos enfoques, a saber, la Clasificación Jerárquica Aglomerativa (Agglomerative Hierarchical Classification).
Desarrollo de un sistema de repetición (Parte 78): Un nuevo Chart Trade (V)
En este artículo, veremos cómo deberemos implementar la parte del receptor. Es decir, aquí implementaremos una versión del Asesor Experto, solo para probar y aprender cómo funciona la comunicación vía protocolo. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Teoría de categorías en MQL5 (Parte 12): Orden
El artículo forma parte de una serie sobre la implementación de grafos utilizando la teoría de categorías en MQL5 y está dedicado a la relación de orden (Order Theory). Hoy analizaremos dos tipos básicos de orden y exploraremos cómo los conceptos de relación de orden pueden respaldar conjuntos monoides en las decisiones comerciales.
Aprendizaje automático y Data Science (Parte 32): Mantener actualizados los modelos de IA, aprendizaje en línea
En el cambiante mundo del comercio, adaptarse a los cambios del mercado no es solo una opción, es una necesidad. Cada día surgen nuevos patrones y tendencias, lo que dificulta que incluso los modelos de aprendizaje automático más avanzados sigan siendo eficaces ante condiciones en constante evolución. En este artículo, exploraremos cómo mantener tus modelos relevantes y receptivos a los nuevos datos del mercado mediante el reentrenamiento automático.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 12): Nacimiento del SIMULADOR (II)
Desarrollar un simulador puede resultar mucho más interesante de lo que parece. Así que demos algunos pasos más en esta dirección, porque las cosas están empezando a ponerse interesantes.
Teoría de categorías en MQL5 (Parte 15): Funtores con grafos
El artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5, analizando los funtores como un puente entre grafos y conjuntos. Volveremos nuevamente a los datos del calendario y, a pesar de sus limitaciones en el uso de un simulador de estrategias, justificaremos el uso de funtores para predecir la volatilidad mediante la correlación.
Optimización de carteras en Python y MQL5
Este artículo explora técnicas avanzadas de optimización de cartera utilizando Python y MQL5 con MetaTrader 5. Demuestra cómo desarrollar algoritmos para el análisis de datos, la asignación de activos y la generación de señales comerciales, enfatizando la importancia de la toma de decisiones basada en datos en la gestión financiera moderna y la mitigación de riesgos.
Creación de una estrategia de retorno a la media basada en el aprendizaje automático
Este artículo propone otro enfoque original para crear sistemas comerciales basados en el aprendizaje automático, usando la clusterización y el etiquetado de transacciones para estrategias de retorno a la media.
Algoritmo de cerradura de código (Сode Lock Algorithm, CLA)
En este artículo repensaremos las cerraduras de código, transformándolas de mecanismos de protección en herramientas para resolver problemas complejos de optimización. Descubra el mundo de las cerraduras de código, no como simples dispositivos de seguridad, sino como inspiración para un nuevo enfoque de la optimización. Hoy crearemos toda una población de "cerraduras" en la que cada cerradura representará una solución única a un problema. A continuación, desarrollaremos un algoritmo que "forzará" estas cerraduras y hallará soluciones óptimas en ámbitos que van desde el aprendizaje automático hasta el desarrollo de sistemas comerciales.
Características del Wizard MQL5 que debe conocer (Parte 25): Pruebas y operaciones en múltiples marcos temporales
Las estrategias que se basan en múltiples marcos de tiempo no se pueden probar en los Asesores Expertos ensamblados por defecto debido a la arquitectura de código MQL5 utilizada en las clases de ensamblaje. Exploramos una posible solución a esta limitación para las estrategias que buscan utilizar múltiples marcos temporales en un estudio de caso con la media móvil cuadrática.
Métodos de optimización de la biblioteca ALGLIB (Parte I)
En este artículo nos familiarizaremos con los métodos de optimización de la biblioteca ALGLIB para MQL5. El artículo incluye ejemplos sencillos e ilustrativos de la aplicación de ALGLIB para resolver problemas de optimización, lo que hará que el proceso de dominio de los métodos resulte lo más accesible posible. Asimismo, analizaremos con detalle la conectividad de algoritmos como BLEIC, L-BFGS y NS y resolveremos un sencillo problema de prueba basado en ellos.
Análisis causal de series temporales mediante entropía de transferencia
En este artículo, analizamos cómo se puede aplicar la causalidad estadística para identificar variables predictivas. Exploraremos el vínculo entre causalidad y entropía de transferencia, además de presentar código MQL5 para detectar transferencias direccionales de información entre dos variables.
Simulación de mercado (Parte 06): Transfiriendo información desde MetaTrader 5 hacia Excel
A muchas personas, especialmente a los no programadores, les resulta muy difícil transferir información entre MetaTrader 5 y otros programas. Uno de esos programas es Excel. Muchos utilizan Excel para gestionar y controlar sus riesgos, ya que es un programa muy bueno y fácil de aprender, incluso para quienes no son programadores de VBA. A continuación, voy a mostrar cómo establecer la comunicación entre MetaTrader 5 y Excel (un método muy sencillo).
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 05): Vistas previas
Hemos logrado desarrollar una forma de ejecutar la repetición de mercado de manera bastante realista y aceptable. Ahora, vamos a continuar con nuestro proyecto y agregar datos para mejorar el comportamiento de la repetición.
De novato a experto: depuración colaborativa en MQL5
La resolución de problemas puede establecer una rutina concisa para dominar habilidades complejas, como la programación en MQL5. Este enfoque le permite concentrarse en la resolución de problemas al tiempo que desarrolla sus capacidades. Cuantos más problemas abordes, más conocimientos avanzados se transferirán a tu cerebro. Personalmente, creo que la depuración es la forma más efectiva de dominar la programación. Hoy repasaremos el proceso de limpieza de código y analizaremos las mejores técnicas para transformar un programa desordenado en uno limpio y funcional. Lea este artículo y descubra información valiosa.
Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos
Dado que el programa puede utilizar varios símbolos, entonces, es necesario crear su propia lista para cada uno de estos símbolos. En este artículo, vamos a combinar estas listas en una colección de datos de tick. En realidad, se trata de una lista común a base de la clase de la matriz dinámica de punteros a las instancias de la clase CObject y sus herederos de la Biblioteca estándar.
Desarrollo de un sistema de repetición (Parte 40): Inicio de la segunda fase (I)
Esta es la nueva fase del sistema de repetición/simulación. En esta etapa, la conversación será realmente una conversación, y el contenido se volverá bastante denso. Les insto a leer el artículo con atención y a utilizar siempre las referencias que se proporcionen. Esto les ayudará a comprender mejor lo que se les está explicando.
Algoritmos de optimización de la población: Evolución de grupos sociales (Evolution of Social Groups, ESG)
En este artículo analizaremos el principio de construcción de algoritmos multipoblacionales y como ejemplo de este tipo de algoritmos consideraremos la evolución de grupos sociales (ESG), un nuevo algoritmo de autor. Así, analizaremos los conceptos básicos, los mecanismos de interacción con la población y las ventajas de este algoritmo, y revisaremos su rendimiento en problemas de optimización.
Ingeniería de características con Python y MQL5 (Parte I): Predicción de medias móviles para modelos de IA de largo plazo
Las medias móviles son, con diferencia, los mejores indicadores para que nuestros modelos de IA realicen predicciones. Sin embargo, podemos mejorar aún más nuestra precisión transformando cuidadosamente nuestros datos. Este artículo le mostrará cómo puede crear modelos de IA capaces de realizar previsiones a más largo plazo que las que realiza actualmente sin que ello suponga una disminución significativa de su nivel de precisión. Es realmente sorprendente lo útiles que son las medias móviles.
Desarrollo de un sistema de repetición (Parte 37): Pavimentando el terreno (I)
En este artículo, vamos a empezar a hacer algo que ojalá hubiera hecho hace mucho más tiempo. Sin embargo, debido a la falta de "terreno firme", no me sentía seguro para presentarlo públicamente. Ahora, tengo las bases para poder hacer lo que vamos a empezar a hacer a partir de ahora. Es una buena idea centrarse al máximo en comprender el contenido de este artículo, y no lo digo para que lo leas por leer. Quiero y necesito recalcar que, si no entiendes este artículo en concreto, puedes abandonar por completo cualquier esperanza de comprender el contenido de los siguientes.
Redes neuronales: así de sencillo (Parte 40): Enfoques para utilizar Go-Explore con una gran cantidad de datos
Este artículo analizará el uso del algoritmo Go-Explore durante un largo periodo de aprendizaje, ya que la estrategia de elección aleatoria puede no conducir a una pasada rentable a medida que aumenta el tiempo de entrenamiento.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 13): Nacimiento del SIMULADOR (III)
Aquí optimizaremos un poco las cosas para facilitar lo que haremos en el próximo artículo. Y también te explicaré cómo puedes visualizar lo que está generando el simulador en términos de aleatoriedad.
Aprendizaje automático y Data Science (Parte 20): Elección entre LDA y PCA en tareas de trading algorítmico en MQL5
En este artículo analizaremos los métodos de reducción de la dimensionalidad y su aplicación en el entorno comercial MQL5. En concreto, exploraremos los matices del análisis discriminante lineal (LDA) y el análisis de componentes principales (PCA) y analizaremos su impacto en el desarrollo de estrategias y el análisis de mercados.
Información mutua como criterio para la selección de características paso a paso
En este artículo, presentamos una implementación MQL5 de selección de características paso a paso basada en la información mutua entre un conjunto de predictores óptimos y una variable objetivo.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 14): Nacimiento del SIMULADOR (IV)
En este artículo, continuaremos con la fase de desarrollo del simulador. Sin embargo, ahora veremos cómo crear efectivamente un movimiento del tipo "RANDOM WALK" (paseo aleatorio). Este tipo de movimiento es bastante intrigante, ya que sirve de base para todo lo que sucede en el mercado de capitales. Además, comenzarás a comprender algunos conceptos esenciales para quienes realizan análisis de mercado.
Desarrollo de un sistema de repetición (Parte 39): Pavimentando el terreno (II)
Antes de comenzar la segunda fase del desarrollo, es necesario reforzar algunas ideas. Entonces, ¿sabes cómo forzar al MQL5 a hacer lo que es necesario? ¿Has intentado ir más allá de lo que informa la documentación? Si no, prepárate. Porque empezaré a hacer cosas mucho más allá de lo que la mayoría hace normalmente.
Algoritmo de búsqueda por vecindad — Across Neighbourhood Search (ANS)
El artículo revela el potencial del algoritmo ANS como paso importante en el desarrollo de métodos de optimización flexibles e inteligentes capaces de considerar la especificidad del problema y la dinámica del entorno en el espacio de búsqueda.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 1): Proyector de gráficos
Este proyecto tiene como objetivo aprovechar el lenguaje MQL5 para desarrollar un conjunto integral de herramientas de análisis para MetaTrader 5. Estas herramientas, que van desde scripts e indicadores hasta modelos de IA y asesores expertos, automatizarán el proceso de análisis del mercado. En ocasiones, este desarrollo producirá herramientas capaces de realizar análisis avanzados sin intervención humana y pronosticar resultados para las plataformas adecuadas. Ninguna oportunidad jamás se perderá. Únase a mí mientras exploramos el proceso de creación de un conjunto sólido de herramientas personalizadas para el análisis de mercado. Comenzaremos desarrollando un programa MQL5 simple que he llamado "Proyector de gráficos" (Chart Projector).
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 25): Preparación para la próxima etapa
En este artículo, concluimos la primera fase del desarrollo del sistema de repetición y simulador. Con este hito, afirmo, estimado lector, que el sistema ha alcanzado un nivel avanzado, abriendo camino para la incorporación de nuevas funcionalidades. El objetivo es enriquecer aún más el sistema, convirtiéndolo en una herramienta poderosa para estudios y para el desarrollo de análisis de mercado.
Desarrollo de un sistema de repetición (Parte 29): Proyecto Expert Advisor — Clase C_Mouse (III)
Ahora que hemos mejorado la clase C_Mouse, podemos concentrarnos en crear una clase destinada a establecer una base totalmente nueva de estudios. Como mencioné al inicio del artículo, no utilizaremos herencia o polimorfismo para crear esta nueva clase. En cambio, vamos a modificar, o mejor, agregar nuevos objetos a la línea de precio. Esto es lo que haremos en este primer momento, y en el próximo artículo, mostraré cómo cambiar los estudios. Pero, realizaremos esto sin cambiar el código de la clase C_Mouse. Reconozco que, en la práctica, esto sería más fácilmente logrado mediante herencia o polimorfismo. No obstante, existen otras técnicas para alcanzar el mismo resultado.
Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit
Hoy hemos intentado construir un experto comercial para predecir las cotizaciones de los tipos de cambio. El algoritmo se basa en modelos de clasificación clásicos: la regresión logística y probit. Como filtro para las señales comerciales, hemos utilizado el criterio de la razón de verosimilitud.
Desarrollamos un asesor experto para controlar los puntos de entrada en las operaciones swing
A medida que el año se acerca a su fin, los tráders a largo plazo suelen hacer balance del año, analizando la historia, el comportamiento y las tendencias del mercado para evaluar el potencial de los movimientos futuros. En este artículo, analizaremos el desarrollo de un asesor experto para el seguimiento de operaciones a largo plazo utilizando MQL5. El objetivo será hacer frente a problemas como la pérdida de oportunidades comerciales debido al trading manual y a la falta de sistemas de supervisión automatizados. Como ejemplo de definición eficaz de una estrategia para nuestra solución y también para desarrollar la misma, utilizaremos uno de los pares comerciales más destacados.