Artículos sobre análisis de datos y estadísticas en MQL5

icon

Los artículos sobre los modelos matemáticos y leyes de probabilidades serán interesantes para muchos operadores. Es que las matemáticas han sido puestas como base de los indicadores, y el conocimiento de las estadísticas es necesario para el análisis de los resultados del trading y el desarrollo de las estrategias.

Lea sobre la lógica difusa, filtros digitales, perfil del mercado, mapas de Kohonen, gas neuronal y muchas otras herramientas que pueden ser utilizadas para el trading.

Nuevo artículo
últimas | mejores
preview
Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Hoy veremos qué es el análisis cuantitativo, cómo lo utilizan los grandes jugadores y crearemos uno de los algoritmos de análisis cuantitativo en MQL5.
preview
Aprendizaje automático y Data Science (Parte 06). Redes neuronales (Parte 02): arquitectura de la redes neuronales con conexión directa

Aprendizaje automático y Data Science (Parte 06). Redes neuronales (Parte 02): arquitectura de la redes neuronales con conexión directa

En el artículo anterior, comenzamos a estudiar las redes neuronales con conexión directa, pero hay algunas cosas que quedaron sin resolver. Una de ellas es el diseño de la arquitectura. Por ello, en el presente artículo, veremos cómo diseñar una red neuronal flexible, teniendo en cuenta los datos de entrada, el número de capas ocultas y los nodos de cada red.
preview
Elaboración de previsiones económicas: el potencial de Python

Elaboración de previsiones económicas: el potencial de Python

¿Cómo utilizar los datos económicos del Banco Mundial para crear previsiones? ¿Qué ocurre si se combinan modelos de IA y economía?
Algoritmos de optimización de la población
Algoritmos de optimización de la población

Algoritmos de optimización de la población

Artículo de introducción a los algoritmos de optimización (AO). Clasificación. En el artículo, intentaremos crear un banco de pruebas (un conjunto de funciones) que servirá en el futuro para comparar los AO entre sí, e incluso, quizás, para identificar el algoritmo más universal de todos los ampliamente conocidos.
preview
Procesos no estacionarios y regresión espuria

Procesos no estacionarios y regresión espuria

El presente artículo pretende demostrar la aparición de regresiones espurias cuando se intenta aplicar el análisis de regresión a procesos no estacionarios utilizando la simulación de Montecarlo.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 2): Script de comentarios analíticos

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 2): Script de comentarios analíticos

En línea con nuestra visión de simplificar la acción del precio, nos complace presentar otra herramienta que puede mejorar significativamente su análisis de mercado y ayudarle a tomar decisiones bien informadas. Esta herramienta muestra indicadores técnicos clave, como los precios del día anterior, los niveles significativos de soporte y resistencia, y el volumen de operaciones, al tiempo que genera automáticamente señales visuales en el gráfico.
Implementando OLAP en la negociación (Parte 2): Visualización de los resultados del análisis interactivo de los datos multidimensionales
Implementando OLAP en la negociación (Parte 2): Visualización de los resultados del análisis interactivo de los datos multidimensionales

Implementando OLAP en la negociación (Parte 2): Visualización de los resultados del análisis interactivo de los datos multidimensionales

En este artículo, se consideran diversos aspectos del desarrollo de la interfaz gráfica interactiva de un programa MQL diseñado para el procesamiento analítico en línea (OLAP) del historial de la cuenta y de los informes comerciales. Para obtener un resultado visual, se usan las ventanas maximizadas y de escala, una disposición adaptable de los controles «de goma» y un nuevo control para mostrar diagramas. A base de eso, fue implementado GUI con una selección de indicadores a lo largo de los ejes de coordenadas, funciones agregadas, tipos de los gráficos y ordenaciones.
Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico
Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico

Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico

A partir de este artículo, comenzaremos el desarrollo de una colección de clases de objetos de gráfico que almacenará una colección de lista de objetos de gráfico con sus subventanas y los indicadores en ellas, y nos permitirá trabajar con cualquier gráfico seleccionado y sus subventanas, o bien directamente con una lista de varios gráficos al mismo tiempo.
preview
Características del Wizard MQL5 que debe conocer (Parte 04): Análisis Discriminante Lineal

Características del Wizard MQL5 que debe conocer (Parte 04): Análisis Discriminante Lineal

El tráder moderno está casi siempre a la búsqueda de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. En esta serie de artículos, trataremos de demostrar que el Wizard MQL5 es la verdadera columna vertebral para un tráder en su búsqueda.
preview
Aprendizaje automático y ciencia de datos (Parte 15): SVM, una herramienta útil en el arsenal de los tráders

Aprendizaje automático y ciencia de datos (Parte 15): SVM, una herramienta útil en el arsenal de los tráders

En este artículo analizaremos el papel que desempeña el método de máquinas de vectores soporte (Support Vector Machines, SVM) en la configuración del futuro del comercio. El artículo puede considerarse una guía detallada sobre cómo utilizar SVM para mejorar las estrategias comerciales, optimizar la toma de decisiones y abrir nuevas oportunidades en los mercados financieros. Hoy nos sumergiremos en el mundo de la SVM a través de aplicaciones reales, instrucciones paso a paso y revisiones por pares. Quizá esta herramienta indispensable le ayude a entender las complejidades del comercio moderno. En cualquier caso, la SVM se convertirá en una herramienta muy útil en el arsenal de todo tráder.
preview
Integración de modelos ocultos de Márkov en MetaTrader 5

Integración de modelos ocultos de Márkov en MetaTrader 5

En este artículo demostramos cómo los modelos ocultos de Márkov entrenados con Python pueden integrarse en las aplicaciones de MetaTrader 5. Los modelos ocultos de Márkov son una potente herramienta estadística utilizada para modelar datos de series temporales, en los que el sistema modelado se caracteriza por estados no observables (ocultos). Una premisa fundamental de los modelos ocultos de Márkov es que la probabilidad de estar en un estado determinado en un momento concreto depende del estado del proceso en el intervalo de tiempo anterior.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 20): FOREX (I)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 20): FOREX (I)

La intención inicial de este artículo no será cubrir todas las características de FOREX, sino más bien adaptar el sistema de manera que puedas realizar al menos una repetición del mercado. La simulación quedará para otro momento. Sin embargo, en caso de que no tengas los ticks y solo tengas las barras, con un poco de trabajo, puedes simular posibles transacciones que podrían haber ocurrido en FOREX. Esto será hasta que te muestre cómo adaptar el simulador. El hecho de intentar trabajar con datos provenientes de FOREX dentro del sistema sin modificarlo conlleva errores de rango.
preview
Características del Wizard MQL5 que debe conocer (Parte 5): Cadenas de Markov

Características del Wizard MQL5 que debe conocer (Parte 5): Cadenas de Markov

Las cadenas de Markov son una poderosa herramienta matemática que se puede usar para modelar y predecir los datos de las series temporales en varios campos, incluido el financiero. En el modelado y la previsión de series temporales financieras, las cadenas de Markov se usan a menudo para modelar la evolución de los activos financieros a lo largo del tiempo, como los precios de las acciones o los tipos de cambio. Una de las principales ventajas de los modelos de cadenas de Markov es su simplicidad y sencillez de uso.
preview
Consejos de un programador profesional (Parte III): Registro Conexión al sistema de recopilación y análisis de logs Seq

Consejos de un programador profesional (Parte III): Registro Conexión al sistema de recopilación y análisis de logs Seq

Implementación de la clase Logger para unificar (estructurar) los mensajes mostrados en el diario del experto. Conexión al sistema de recopilación y análisis de logs Seq. Supervisión de los mensajes en el modo online.
preview
Alan Andrews y sus métodos de análisis de series temporales

Alan Andrews y sus métodos de análisis de series temporales

Alan Andrews es uno de los "educadores" más célebres del mundo moderno en el campo del trading. Su "tridente" está incluido en casi todos los programas modernos de análisis de cotizaciones, pero la mayoría de los tráders no utilizan ni una quinta parte de las posibilidades que ofrece esta herramienta. Y el curso original de Andrews incluye una descripción no solo del tridente (aunque sigue siendo lo esencial), sino también de algunas otras líneas útiles. Este artículo ofrece al lector una idea de las maravillosas técnicas de análisis de gráficos que Andrews enseñó en su curso original. Le advertimos que hay muchas fotos.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 16): Un nuevo sistema de clases

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 16): Un nuevo sistema de clases

Precisamos organizarnos mejor. El código está creciendo y si no lo organizamos ahora, será imposible hacerlo después. Así que vamos a dividir para conquistar. El hecho de que MQL5 nos permita usar clases nos ayudará en esta tarea. Pero para hacerlo, es necesario que tengas algún conocimiento sobre algunas cosas relacionadas con las clases. Y tal vez lo que más confunde a los aspirantes y principiantes es la herencia. Así que en este artículo, te mostraré de manera práctica y sencilla cómo usar estos mecanismos.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 22): FOREX (III)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 22): FOREX (III)

Para aquellos que aún no han comprendido la diferencia entre el mercado de acciones y el mercado de divisas (forex), a pesar de que este ya es el tercer artículo en el que abordo esto, debo dejar claro que la gran diferencia es el hecho de que en forex no existe, o mejor dicho, no se nos informa acerca de algunas cosas que realmente ocurrieron en la negociación.
preview
Indicador de estimación de fuerza y debilidad de pares de divisas en MQL5 puro

Indicador de estimación de fuerza y debilidad de pares de divisas en MQL5 puro

Hoy crearemos un indicador profesional para analizar la fuerza de las divisas en MQL5. Esta guía paso a paso le enseñará cómo desarrollar una poderosa herramienta comercial con un tablero visual para MetaTrader 5. Asimismo, aprenderá a calcular la fuerza de los pares de divisas en múltiples marcos temporales (H1, H4, D1), a implementar actualizaciones dinámicas de datos y a crear una interfaz fácil de usar.
preview
Características del Wizard MQL5 que debe conocer (Parte 1): Análisis de regresión

Características del Wizard MQL5 que debe conocer (Parte 1): Análisis de regresión

De manera consciente o inconsciente, el tráder moderno está casi siempre en busca de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. Este proceso de investigación requiere mucho tiempo y se ve acompañado por muchos errores. En esta serie de artículos, intentaré demostrar que el Wizard MQL5 es un verdadero apoyo para el tráder. Gracias al Wizard, el tráder podrá ahorrar tiempo a la hora de poner en práctica sus ideas. Asimismo, podrá reducir la probabilidad de que surjan errores por duplicación de código. En lugar de perder el tiempo con el código, los tráders tendrán la posibilidad de poner en práctica su filosofía comercial.
preview
El criterio de homogeneidad de Smirnov como indicador de la no estacionariedad de las series temporales

El criterio de homogeneidad de Smirnov como indicador de la no estacionariedad de las series temporales

El artículo analiza uno de los criterios de homogeneidad no paramétricos más famosos: el criterio de Smirnov. Asimismo, se consideran tanto datos modelo como cotizaciones reales, y se ofrece un ejemplo de construcción de un indicador de no estacionariedad (iSmirnovDistance).
preview
Aprendizaje automático y Data Science (Parte 30): La pareja ideal para predecir el mercado bursátil: redes neuronales convolucionales (CNN) y recurrentes (RNN)

Aprendizaje automático y Data Science (Parte 30): La pareja ideal para predecir el mercado bursátil: redes neuronales convolucionales (CNN) y recurrentes (RNN)

En este artículo exploramos la integración dinámica de redes neuronales convolucionales (CNN) y redes neuronales recurrentes (RNN) en la predicción bursátil. Aprovechando la capacidad de las CNN para extraer patrones y la destreza de las RNN para manejar datos secuenciales. Veamos cómo esta potente combinación puede mejorar la precisión y la eficacia de los algoritmos de negociación.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 54): Clases herederas del indicador abstracto básico

Trabajando con las series temporales en la biblioteca DoEasy (Parte 54): Clases herederas del indicador abstracto básico

En este artículo, vamos a hablar de la creación de las clases de los objetos herederos del indicador abstracto básico. Estos objetos nos permitirán crear los asesores expertos tipo indicador, recopilar y obtener estadísticas de valores de datos de diferentes indicadores y precios. Además, crearemos una colección de objetos de indicador de la cual se podrá obtener el acceso a las propiedades y datos de cada indicador creado en el programa.
preview
Teoría de categorías en MQL5 (Parte 1)

Teoría de categorías en MQL5 (Parte 1)

La teoría de categorías es un área diversa y en expansión de las matemáticas, relativamente inexplorada aún en la comunidad MQL. Esta serie de artículos tiene como objetivo destacar algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
preview
Pruebas de permutación de Monte Carlo en MetaTrader 5

Pruebas de permutación de Monte Carlo en MetaTrader 5

En este artículo echaremos un vistazo a cómo podemos realizar pruebas de permutación sobre la base de datos de ticks barajados en cualquier asesor experto utilizando solo MetaTrader 5.
preview
Algoritmo de cola de cometa (Comet Tail Algorithm, CTA)

Algoritmo de cola de cometa (Comet Tail Algorithm, CTA)

En este artículo, analizaremos un nuevo algoritmo de optimización de autor, el CTA (Comet Tail Algorithm), que se inspira en objetos espaciales únicos: los cometas y sus impresionantes colas que se forman al acercarse al Sol. Este algoritmo se basa en el concepto del movimiento de los cometas y sus colas, y está diseñado para encontrar soluciones óptimas en problemas de optimización.
preview
Validación cruzada simétrica combinatoria en MQL5

Validación cruzada simétrica combinatoria en MQL5

El artículo muestra la implementación de la validación cruzada simétrica combinatoria en MQL5 puro para medir el grado de ajuste tras optimizar la estrategia usando el algoritmo completo lento del simulador de estrategias.
preview
GIT: ¿Pero qué es esto?

GIT: ¿Pero qué es esto?

En este artículo presentaré una herramienta de suma importancia para quienes desarrollan programas. Si no conoces GIT, consulta este artículo para tener una noción de lo que se trata esta herramienta y cómo usarla junto al MQL5.
preview
Implementando el algoritmo de aprendizaje ARIMA en MQL5

Implementando el algoritmo de aprendizaje ARIMA en MQL5

En este artículo, implementaremos un algoritmo que aplica un modelo autorregresivo de media móvil integrada (modelo Box-Jenkins) utilizando el método de minimización de la función de Powell. Box y Jenkins argumentaron que la mayoría de las series temporales se pueden modelar con una o ambas estructuras.
preview
Desarrollo de un robot de trading en Python (Parte 3): Implementamos un algoritmo comercial basado en el modelo

Desarrollo de un robot de trading en Python (Parte 3): Implementamos un algoritmo comercial basado en el modelo

Hoy vamos a continuar con la serie de artículos sobre la creación de un robot comercial en Python y MQL5. En esta ocasión, resolveremos el problema relacionado con la creación de un algoritmo comercial en Python.
preview
Filtrado y extracción de características en el dominio de la frecuencia

Filtrado y extracción de características en el dominio de la frecuencia

En este artículo, analizaremos la aplicación de filtros digitales a series temporales representadas en el dominio de la frecuencia con el fin de extraer características únicas que puedan resultar útiles para los modelos de predicción.
preview
Aprendizaje automático y Data Science (Parte 29): Consejos esenciales para seleccionar los mejores datos de divisas para el entrenamiento de IA

Aprendizaje automático y Data Science (Parte 29): Consejos esenciales para seleccionar los mejores datos de divisas para el entrenamiento de IA

En este artículo, profundizamos en los aspectos cruciales de la elección de los datos de Forex más relevantes y de alta calidad para mejorar el rendimiento de los modelos de IA.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 55): Clase de colección de indicadores

Trabajando con las series temporales en la biblioteca DoEasy (Parte 55): Clase de colección de indicadores

En este artículo, seguiremos desarrollando las clases de los objetos de indicador y sus colecciones. Crearemos la descripción para cada objeto de indicador y ajustaremos la clase de colección para un almacenamiento y obtención correctos de los objetos de indicador desde la lista de colección.
preview
Redes neuronales: así de sencillo (Parte 22): Aprendizaje no supervisado de modelos recurrentes

Redes neuronales: así de sencillo (Parte 22): Aprendizaje no supervisado de modelos recurrentes

Continuamos analizando los algoritmos de aprendizaje no supervisado. Hoy hablaremos sobre el uso de autocodificadores en el entrenamiento de modelos recurrentes.
preview
Desarrollando un EA comercial desde cero (Parte 17): Acceso a los datos en la web (III)

Desarrollando un EA comercial desde cero (Parte 17): Acceso a los datos en la web (III)

En este artículo continuaremos a aprender cómo obtener datos de la web para utilizarlos en un EA. Así que pongamos manos a la obra, o más bien a empezar a codificar un sistema alternativo.
preview
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte III): Optimización de una estrategia de cobertura simple (I)

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte III): Optimización de una estrategia de cobertura simple (I)

En la tercera parte, volveremos a los Asesores Expertos Simple Hedge y Simple Grid que hemos desarrollado anteriormente. En esta ocasión, mejoraremos el Simple Hedge Expert Advisor usando el análisis matemático y el enfoque de fuerza bruta para utilizar de manera óptima la estrategia. Este artículo profundizará en la optimización matemática de estrategias, sentando las bases para futuras investigaciones sobre la optimización basada en códigos de partes posteriores.
Trabajando con los precios en la biblioteca DoEasy (Parte 63): Profundidad del mercado, clase de orden abstracta de la Profundidad del mercado
Trabajando con los precios en la biblioteca DoEasy (Parte 63): Profundidad del mercado, clase de orden abstracta de la Profundidad del mercado

Trabajando con los precios en la biblioteca DoEasy (Parte 63): Profundidad del mercado, clase de orden abstracta de la Profundidad del mercado

En el presente artículo, empezaremos a desarrollar la funcionalidad para trabajar con la Profundidad del mercado. Crearemos la clase del objeto de una orden abstracta de la Profundidad del mercado y sus clases herederas.
preview
Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos

En este artículo nos familiarizaremos con el algoritmo de colmena artificial (ABHA), desarrollado en 2009. El algoritmo está orientado a la resolución de problemas de optimización continua. Veremos cómo el ABHA se inspira en el comportamiento de una colonia de abejas, donde cada abeja tiene un papel único que les ayuda a encontrar recursos de forma más eficiente.
preview
Desarrollando un EA comercial desde cero (Parte 15): Acceso a los datos en la web (I)

Desarrollando un EA comercial desde cero (Parte 15): Acceso a los datos en la web (I)

Cómo acceder a los datos en la web dentro de MetaTrader 5. En la web tenemos varios sitios y lugares en los que una gran y vasta cantidad de información está disponible y accesible para aquellos que saben dónde buscar y cómo utilizar mejor esta información.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 3): Entrenando tu propio LLM utilizando la CPU

Añadimos un LLM personalizado a un robot comercial (Parte 3): Entrenando tu propio LLM utilizando la CPU

Con el rápido desarrollo de la inteligencia artificial actual, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar LLM potentes en nuestro trading algorítmico. Para la mayoría de las personas, es difícil ajustar estos poderosos modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos abordará paso a paso cómo lograr este objetivo.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 02): Primeros experimentos (II)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 02): Primeros experimentos (II)

Intentemos esta vez un enfoque diferente para lograr el objetivo de 1 minuto. Sin embargo, esta tarea no es tan sencilla como muchos piensan.