
Desarrollo de un sistema de repetición (Parte 51): Esto complica las cosas (III)
En este artículo comprenderás una de las cosas más complejas que existen en la programación MQL5: la forma correcta de obtener el ID del gráfico y por qué a veces los objetos no se trazan en él. El contenido expuesto aquí tiene como objetivo, pura y simplemente, ser didáctico. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.

Desarrollo de un sistema de repetición (Parte 27): Proyecto Expert Advisor — Clase C_Mouse (I)
En este artículo, daremos vida a la clase C_Mouse. Está diseñada para permitir programar al más alto nivel posible. Sin embargo, hablar de programar a niveles altos o bajos no está relacionado con incluir palabrotas o jerga en el código. Todo lo contrario. Cuando mencionamos programación de alto o bajo nivel, nos referimos a lo fácil o difícil que es para otro programador entender el código.

Hibridación de algoritmos basados en poblaciones. Esquema secuencial y paralelo
En este artículo, nos sumergiremos en el mundo de la hibridación de algoritmos de optimización analizando tres tipos clave: la mezcla de estrategias y la hibridación secuencial y paralela. Asimismo, realizaremos una serie de experimentos combinando y probando los algoritmos de optimización correspondientes.

Características del Wizard MQL5 que debe conocer (Parte 24): Medias móviles
Las medias móviles son un indicador muy común que la mayoría de los operadores utilizan y comprenden. Exploramos posibles casos de uso menos comunes dentro de los Asesores Expertos disponibles en el Asistente de MQL5.

Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida
La función de pérdida es la métrica clave de los algoritmos de aprendizaje automático que proporciona información al proceso de formación cuantificando el rendimiento de un conjunto determinado de parámetros en comparación con el objetivo previsto. Exploramos los distintos formatos de esta función en una clase de asistente personalizada MQL5.

Implementación en MQL5 de la prueba de Augmented Dickey-Fuller (ADF)
En este artículo demostramos la implementación de la prueba Dickey-Fuller aumentada (ADF, por sus siglas en inglés), y la aplicamos para realizar pruebas de cointegración utilizando el método Engle-Granger.


Desarrollo de un sistema de repetición — Simulación de mercado (Parte 10): Sólo datos reales para la repetición
Aquí veremos cómo se pueden utilizar datos más fiables (ticks negociados) en el sistema de repetición, sin tener que preocuparnos necesariamente de si están ajustados o no.

Aprendizaje automático y Data Science (Parte 27): Redes neuronales convolucionales (CNN) en los robots comerciales de MetaTrader 5: ¿Merecen la pena?
Las redes neuronales convolucionales (CNN) son famosas por su destreza en la detección de patrones en imágenes y vídeos, con aplicaciones que abarcan diversos campos. En este artículo, exploramos el potencial de las CNN para identificar patrones valiosos en los mercados financieros y generar señales comerciales eficaces para los robots comerciales de MetaTrader 5. Descubramos cómo puede aprovecharse esta técnica de aprendizaje automático profundo para tomar decisiones de negociación más inteligentes.

Características del Wizard MQL5 que debe conocer (Parte 29): Continuación sobre las tasas de aprendizaje con MLP
Concluimos nuestro análisis de la sensibilidad de la tasa de aprendizaje al rendimiento de los Asesores Expertos examinando principalmente las Tasas de Aprendizaje Adaptativo. Estas tasas de aprendizaje pretenden personalizarse para cada parámetro de una capa durante el proceso de entrenamiento, por lo que evaluamos los beneficios potenciales frente al peaje de rendimiento esperado.

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados
En este artículo, continuaremos analizando el algoritmo de colmena artificial ABHA profundizando en la codificación y observando los métodos restantes. Recordemos que cada abeja en el modelo está representada como un agente individual cuyo comportamiento dependerá de información interna y externa, así como del estado motivacional. Probaremos el algoritmo con varias funciones y resumiremos los resultados presentándolos en una tabla de calificación.

Desarrollo de un sistema de repetición (Parte 29): Proyecto Expert Advisor — Clase C_Mouse (III)
Ahora que hemos mejorado la clase C_Mouse, podemos concentrarnos en crear una clase destinada a establecer una base totalmente nueva de estudios. Como mencioné al inicio del artículo, no utilizaremos herencia o polimorfismo para crear esta nueva clase. En cambio, vamos a modificar, o mejor, agregar nuevos objetos a la línea de precio. Esto es lo que haremos en este primer momento, y en el próximo artículo, mostraré cómo cambiar los estudios. Pero, realizaremos esto sin cambiar el código de la clase C_Mouse. Reconozco que, en la práctica, esto sería más fácilmente logrado mediante herencia o polimorfismo. No obstante, existen otras técnicas para alcanzar el mismo resultado.

Características del Wizard MQL5 que debe conocer (Parte 09): Combinación de clusterización de K-medias con ondas fractales
La clusterización de K-medias adopta el enfoque de agrupar puntos de datos como un proceso centrado inicialmente en una macro representación del conjunto de datos en la que se aplican centroides de clúster generados aleatoriamente. A continuación, dichos centroides se escalan y ajustan para representar con precisión el conjunto de datos. En el presente artículo, hablaremos de la clusterización y de varios usos de la misma.

Aplicamos el coeficiente generalizado de Hurst y la prueba del coeficiente de varianza en MQL5
En este artículo, discutiremos cómo utilizar el coeficiente generalizado de Hurst y la prueba del coeficiente de varianza para analizar el comportamiento de las series de precios en MQL5.

Análisis causal de series temporales mediante entropía de transferencia
En este artículo, analizamos cómo se puede aplicar la causalidad estadística para identificar variables predictivas. Exploraremos el vínculo entre causalidad y entropía de transferencia, además de presentar código MQL5 para detectar transferencias direccionales de información entre dos variables.

Desarrollo de un sistema de repetición (Parte 75): Un nuevo Chart Trade (II)
En este artículo explicaré gran parte de la clase C_ChartFloatingRAD. Esta es la encargada de hacer que Chart Trade funcione. Sin embargo, no terminaré la explicación aquí. La finalizaré en el próximo artículo, ya que el contenido de este es bastante denso y necesita ser comprendido a fondo. El contenido expuesto aquí tiene como único objetivo la enseñanza. En ningún caso debe considerarse como una aplicación cuya finalidad sea distinta a la enseñanza y el estudio de los conceptos mostrados.

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte IV): Optimización de la estrategia de cuadrícula simple (I)
En esta cuarta parte, revisamos los asesores expertos (EA) Simple Hedge y Simple Grid desarrollados anteriormente. Nuestro enfoque se centra en perfeccionar Simple Grid EA a través del análisis matemático y un enfoque de fuerza bruta, apuntando al uso óptimo de la estrategia. Este artículo profundiza en la optimización matemática de la estrategia, preparando el escenario para la futura exploración de la optimización basada en codificación en entregas posteriores.

Ingeniería de características con Python y MQL5 (Parte I): Predicción de medias móviles para modelos de IA de largo plazo
Las medias móviles son, con diferencia, los mejores indicadores para que nuestros modelos de IA realicen predicciones. Sin embargo, podemos mejorar aún más nuestra precisión transformando cuidadosamente nuestros datos. Este artículo le mostrará cómo puede crear modelos de IA capaces de realizar previsiones a más largo plazo que las que realiza actualmente sin que ello suponga una disminución significativa de su nivel de precisión. Es realmente sorprendente lo útiles que son las medias móviles.

De novato a experto: depuración colaborativa en MQL5
La resolución de problemas puede establecer una rutina concisa para dominar habilidades complejas, como la programación en MQL5. Este enfoque le permite concentrarse en la resolución de problemas al tiempo que desarrolla sus capacidades. Cuantos más problemas abordes, más conocimientos avanzados se transferirán a tu cerebro. Personalmente, creo que la depuración es la forma más efectiva de dominar la programación. Hoy repasaremos el proceso de limpieza de código y analizaremos las mejores técnicas para transformar un programa desordenado en uno limpio y funcional. Lea este artículo y descubra información valiosa.

Clústeres de series temporales en inferencia causal
Los algoritmos de agrupamiento en el aprendizaje automático son importantes algoritmos de aprendizaje no supervisado que pueden dividir los datos originales en grupos con observaciones similares. Utilizando estos grupos, puede analizar el mercado de un grupo específico, buscar los grupos más estables utilizando nuevos datos y hacer inferencias causales. El artículo propone un método original de agrupación de series temporales en Python.

Desarrollo de un sistema de repetición (Parte 50): Esto complica las cosas (II)
Vamos resolver la cuestión del ID del gráfico, pero al mismo tiempo, vamos empezar a garantizar que el usuario pueda hacer uso de una plantilla personal, enfocada en analizar el activo que desea estudiar y simular. El contenido expuesto aquí tiene como objetivo, pura y simplemente, ser didáctico. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.

Características del Wizard MQL5 que debe conocer (Parte 27): Medias móviles y el ángulo de ataque
El ángulo de ataque es una métrica citada a menudo cuya inclinación se entiende que está estrechamente relacionada con la fuerza de una tendencia predominante. Nos fijamos en cómo se utiliza y se entiende comúnmente y examinamos si hay cambios que podrían introducirse en la forma de medirlo en beneficio de un sistema comercial que lo ponga en uso.

Codificación ordinal para variables nominales
En este artículo, analizamos y demostramos cómo convertir predictores nominales en formatos numéricos adecuados para algoritmos de aprendizaje automático, utilizando tanto Python como MQL5.

Teoría de categorías en MQL5 (Parte 18): Cuadrado de la naturalidad
El artículo continúa la serie sobre teoría de categorías, presentando transformaciones naturales que suponen un elemento clave de la teoría. Hoy echaremos un vistazo a su definición (aparentemente compleja) y luego profundizaremos en los ejemplos y métodos de aplicación de las transformaciones para pronosticar la volatilidad.

Desarrollo de un sistema de repetición (Parte 44): Proyecto Chart Trade (III)
En el artículo anterior, expliqué cómo puedes manipular los datos de la plantilla para usarlos en un OBJ_CHART. Allí solo introduje el tema sin entrar en muchos detalles, ya que en esa versión el trabajo se hizo de una manera muy simplificada. Sin embargo, se hizo de esa forma precisamente para facilitar la explicación del contenido. Pues, a pesar de parecer simple hacer ciertas cosas, algunas no son tan evidentes, y sin comprender la parte más simple y básica, no entenderás realmente lo que estoy haciendo.

Desarrollo de un sistema de repetición (Parte 48): Conceptos que hay que entender y comprender
¿Qué tal aprender algo nuevo? En este artículo, aprenderás cómo transformar scripts y servicios y por qué es útil hacerlo.

Aprendizaje automático y Data Science (Parte 25): Predicción de series temporales de divisas mediante una red neuronal recurrente (RNN)
Las redes neuronales recurrentes (RNNs, Recurrent Neural Networks) destacan por aprovechar la información del pasado para predecir acontecimientos futuros. Sus notables capacidades predictivas se han aplicado en diversos ámbitos con gran éxito. En este artículo, utilizaremos modelos RNN para predecir tendencias en el mercado de divisas, demostrando su potencial para mejorar la precisión de las predicciones en el comercio de divisas.

El papel de la calidad del generador de números aleatorios en la eficiencia de los algoritmos de optimización
En este artículo, analizaremos el generador de números aleatorios Mersenne Twister y lo compararemos con el estándar en MQL5. También determinaremos la influencia de la calidad del generador de números aleatorios en los resultados de los algoritmos de optimización.

Desarrollo de un sistema de repetición (Parte 26): Proyecto Expert Advisor — Clase C_Terminal
Podemos comenzar a elaborar un EA para uso en repetición/simulación. Sin embargo, necesitamos algo refinado, no solo una solución cualquiera. No debemos, no obstante, ser intimidados por la complejidad inicial. Es esencial iniciar de algún punto, si no, acabaremos por acomodarnos, reflexionando sobre la dificultad del desafío sin realmente intentar superarlo. La esencia de la programación es exactamente esa: enfrentar un obstáculo y buscar superarlo a través de estudio, pruebas y extensa investigación.

Desarrollo de un sistema de repetición (Parte 47): Proyecto Chart Trade (VI)
En este artículo finalizaremos el indicador Chart Trade, haciéndolo funcional hasta el punto de poder usarlo junto con algún Expert Advisor. Entonces, en este artículo finalizaremos el indicador Chart Trade, haciéndolo funcional hasta el punto de poder usarlo junto con algún Expert Advisor. Esto nos permitirá acceder y trabajar con el indicador, como si estuviera realmente vinculado al Expert Advisor. Pero lo haremos de una manera mucho más interesante que en el pasado.

Características del Wizard MQL5 que debe conocer (Parte 10). El RBM no convencional
Las máquinas de Boltzmann restringidas (RBM, Restrictive Boltzmann Machines) son, en el nivel básico, una red neuronal de dos capas que es competente en la clasificación no supervisada a través de la reducción de la dimensionalidad. Tomamos sus principios básicos y examinamos si lo rediseñamos y entrenamos de forma poco ortodoxa, podríamos obtener un filtro de señal útil.

Características del Wizard MQL5 que debe conocer (Parte 35): Regresión de vectores de soporte
La regresión de vectores de soporte es una forma idealista de encontrar una función o "hiperplano" que describa mejor la relación entre dos conjuntos de datos. Intentamos aprovechar esto en la previsión de series de tiempo dentro de clases personalizadas del asistente MQL5.

Factorización de matrices: lo básico
Como el objetivo aquí es ser didáctico. Mantendré las cosas en su forma más sencilla. Es decir, implementaremos solo lo necesario: la multiplicación de matrices. Verás que esto será suficiente para simular la multiplicación de una matriz por un escalar. La gran dificultad que muchas personas tienen a la hora de implementar un código utilizando la factorización de matrices es que, a diferencia de una factorización escalar, donde en casi todos los casos el orden de los factores no altera el resultado, cuando se usan matrices, la cosa no es así.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 07): Primeras mejoras (II)
En el artículo anterior realizamos correcciones en algunos puntos y agregamos pruebas a nuestro sistema de repetición para garantizar la mayor estabilidad posible. Asimismo, comenzamos a crear y utilizar un archivo de configuración para dicho sistema.

Algoritmo de optimización basado en la migración animal (Animal Migration Optimization, AMO)
El artículo está dedicado al algoritmo AMO, que modela la migración estacional de los animales en busca de condiciones óptimas para la vida y la reproducción. Las principales características de AMO incluyen el uso de vecindad topológica y un mecanismo de actualización probabilística, lo que lo hace fácil de implementar y flexible para diversas tareas de optimización.

Integración de MQL5 con paquetes de procesamiento de datos (Parte 3): Visualización mejorada de datos
En este artículo, realizaremos una visualización de datos mejorada que va más allá de los gráficos básicos, incorporando características como interactividad, datos en capas y elementos dinámicos, lo que permite a los operadores explorar tendencias, patrones y correlaciones de manera más eficaz.

Desarrollo de un sistema de repetición (Parte 49): Esto complica las cosas (I)
En este artículo complicaremos un poco las cosas. Utilizando lo que vimos en los artículos anteriores, comenzaremos a liberar el archivo de plantilla para que el usuario pueda utilizar una plantilla personalizada. Sin embargo, haré los cambios poco a poco, ya que también modificaré el indicador con el fin de reducir la carga de MetaTrader 5.

Inferencia causal en problemas de clasificación de series temporales
En este artículo, examinaremos la teoría de la inferencia causal utilizando el aprendizaje automático, así como la implementación del enfoque personalizado en Python. La inferencia causal y el pensamiento causal tienen sus raíces en la filosofía y la psicología y desempeñan un papel importante en nuestra comprensión de la realidad.

Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte I)
El presente artículo presenta un experimento único cuyo objetivo es investigar el comportamiento de los algoritmos de optimización basados en poblaciones en el contexto de su capacidad para abandonar eficientemente los mínimos locales cuando la diversidad en la población es baja y alcanzar los máximos globales. Los trabajos en este campo nos permitirán comprender mejor qué algoritmos específicos pueden continuar con éxito la búsqueda a partir de las coordenadas fijadas por el usuario como punto de partida, y qué factores influyen en su éxito en este proceso.

Características del Wizard MQL5 que debe conocer (Parte 21): Pruebas con datos del calendario económico
De manera predeterminada, los datos del calendario económico no están disponibles para realizar pruebas con asesores expertos dentro del Probador de estrategias. Analizamos cómo las bases de datos podrían ayudar a solucionar esta limitación. Entonces, en este artículo exploramos cómo se pueden usar las bases de datos SQLite para archivar noticias del Calendario Económico, de modo que los Asesores Expertos ensamblados mediante un asistente puedan usarlas para generar señales comerciales.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 04): Haciendo ajustes (II)
Vamos continuar con el desarrollo del sistema y el control. Sin una forma de controlar el servicio, se complica avanzar y mejorar el sistema.