Artículos sobre programación y uso de robots comerciales en el lenguaje MQL5

icon

Los Asesores Expertos creados para la plataforma MetaTrader ejecutan una gran variedad de funciones ideadas por sus desarrolladores. Los robots comerciales son capaces de realizar el seguimiento de los instrumentos financieros 24 horas al día, copiar las operaciones, confeccionar y enviar los informes, analizar las noticias, e incluso facilitar al operador una interfaz gráfica personalizada desarrollada por encargo.

Los artículos contienen las técnicas de programación, ideas matemáticas para el procesamiento de datos, consejos para la creación y el encargo de robots comerciales.

Nuevo artículo
últimas | mejores
preview
Cuerpo en Connexus (Parte 4): Añadiendo compatibilidad con cuerpos HTTP

Cuerpo en Connexus (Parte 4): Añadiendo compatibilidad con cuerpos HTTP

En este artículo, exploramos el concepto de cuerpo en las solicitudes HTTP, que es esencial para enviar datos como JSON y texto sin formato. Discutimos y explicamos cómo usarlo correctamente con los encabezados adecuados. También presentamos la clase ChttpBody, parte de la biblioteca Connexus, que simplificará el trabajo con el cuerpo de las solicitudes.
preview
Formulación Genérica de Optimización (GOF, Generic Optimization Formulation) utilizando el `Criterio máximos del usuario` (Custom Max) con múltiples restricciones en el Probador de Estrategias

Formulación Genérica de Optimización (GOF, Generic Optimization Formulation) utilizando el `Criterio máximos del usuario` (Custom Max) con múltiples restricciones en el Probador de Estrategias

En este artículo presentaremos una forma de implementar problemas de optimización con múltiples objetivos y restricciones al seleccionar «Custom Max» en la pestaña Setting del terminal MetaTrader 5. Como ejemplo, el problema de optimización podría ser: Maximizar el Factor de Beneficio, el Beneficio Neto y el Factor de Recuperación, de forma que la reducción sea inferior al 10%, el número de pérdidas consecutivas sea inferior a 5 y el número de operaciones por semana sea superior a 5.
preview
Características del Wizard MQL5 que debe conocer (Parte 36): Q-Learning con Cadenas de Markov

Características del Wizard MQL5 que debe conocer (Parte 36): Q-Learning con Cadenas de Markov

El aprendizaje de refuerzo es uno de los tres principios principales del aprendizaje automático, junto con el aprendizaje supervisado y el aprendizaje no supervisado. Por lo tanto, se preocupa del control óptimo o de aprender la mejor política a largo plazo que se adapte mejor a la función objetivo. Con este telón de fondo, exploramos su posible papel en la información del proceso de aprendizaje de una MLP de un Asesor Experto montado por un asistente.
preview
Redes neuronales en el trading: Agente multimodal con herramientas complementarias (FinAgent)

Redes neuronales en el trading: Agente multimodal con herramientas complementarias (FinAgent)

Hoy querríamos presentarle el FinAgent, un framework de agente multimodal para el comercio financiero diseñado para analizar distintos tipos de datos que reflejan la dinámica del mercado y los patrones comerciales históricos.
preview
Características del Wizard MQL5 que debe conocer (Parte 46): Ichimoku Kinko Hyo (IKH)

Características del Wizard MQL5 que debe conocer (Parte 46): Ichimoku Kinko Hyo (IKH)

El Ichimoku Kinko Hyo (IKH) es un reconocido indicador japonés que sirve como sistema de identificación de tendencias. Examinamos esto, patrón por patrón, como ha sido el caso en artículos similares anteriores, y también evaluamos sus estrategias e informes de pruebas con la ayuda de las clases de la biblioteca del asistente MQL5 y el ensamblaje.
preview
Redes neuronales: así de sencillo (Parte 79): Adición de solicitudes en el contexto de estado (FAQ)

Redes neuronales: así de sencillo (Parte 79): Adición de solicitudes en el contexto de estado (FAQ)

En el artículo anterior, nos familiarizamos con uno de los métodos para detectar objetos en una imagen. Sin embargo, el procesamiento de una imagen estática se diferencia ligeramente del trabajo con series temporales dinámicas que incluyen la dinámica de los precios que hemos analizado. En este artículo les presentaré un método de detección de objetos en vídeo que resulta algo más cercano al problema que estamos resolviendo.
preview
Características del Wizard MQL5 que debe conocer (Parte 32): Regularización

Características del Wizard MQL5 que debe conocer (Parte 32): Regularización

La regularización es una forma de penalizar la función de pérdida en proporción a la ponderación discreta aplicada a lo largo de las distintas capas de una red neuronal. Observamos la importancia que esto puede tener, para algunas de las diversas formas de regularización, en ejecuciones de prueba con un Asesor Experto ensamblado mediante el asistente.
preview
Redes neuronales: así de sencillo (Parte 93): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo (Parte final)

Redes neuronales: así de sencillo (Parte 93): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo (Parte final)

En este artículo, continuamos la aplicación de los planteamientos del modelo ATFNet, que combina de forma adaptativa los resultados de 2 bloques (frecuencia y tiempo) dentro de la predicción de series temporales.
preview
Redes neuronales en el trading: Segmentación de datos basada en expresiones de referencia

Redes neuronales en el trading: Segmentación de datos basada en expresiones de referencia

En el proceso de análisis de la situación del mercado, dividimos este en segmentos individuales, identificando las tendencias clave. Sin embargo, los métodos tradicionales de análisis suelen centrarse en un solo aspecto, lo cual limita nuestra percepción. En este artículo, presentaremos un método que nos permitirá seleccionar varios objetos, ofreciéndonos una comprensión más completa y variada de la situación.
preview
Características del Wizard MQL5 que debe conocer (Parte 15): Máquinas de vectores de soporte utilizando el polinomio de Newton

Características del Wizard MQL5 que debe conocer (Parte 15): Máquinas de vectores de soporte utilizando el polinomio de Newton

Las máquinas de vectores de soporte clasifican los datos en función de clases predefinidas explorando los efectos de aumentar su dimensionalidad. Se trata de un método de aprendizaje supervisado bastante complejo dado su potencial para tratar datos multidimensionales. Para este artículo consideramos cómo su implementación muy básica de datos bidimensionales puede hacerse más eficientemente con el polinomio de Newton al clasificar precio-acción.
preview
Redes neuronales en el trading: Segmentación guiada

Redes neuronales en el trading: Segmentación guiada

Hoy proponemos al lector familiarizarse con el método de análisis multimodal complejo de interacción y comprensión de características.
preview
Redes neuronales en el trading: Estudio de la estructura local de datos

Redes neuronales en el trading: Estudio de la estructura local de datos

La identificación y preservación eficaz de la estructura local de los datos del mercado en condiciones de ruido es una tarea importante en el trading. El uso del mecanismo de Self-Attention ha ofrecido buenos resultados en el procesamiento de estos datos, pero el método clásico no tiene en cuenta las características locales de la estructura original. En este artículo, le propongo familiarizarse con un algoritmo que considera estas dependencias estructurales.
preview
Redes neuronales en el trading: Agente con memoria multinivel

Redes neuronales en el trading: Agente con memoria multinivel

Los enfoques de memoria multinivel que imitan los procesos cognitivos humanos permiten procesar datos financieros complejos y adaptarse a nuevas señales, lo cual contribuye a mejorar la eficacia de las decisiones de inversión en mercados dinámicos.
preview
Asistente de Connexus (Parte 5): Métodos HTTP y códigos de estado

Asistente de Connexus (Parte 5): Métodos HTTP y códigos de estado

En este artículo, comprenderemos los métodos HTTP y los códigos de estado, dos piezas muy importantes de la comunicación entre el cliente y el servidor en la web. Comprender lo que hace cada método le brinda el control para realizar solicitudes con mayor precisión, informando al servidor qué acción desea realizar y haciéndolo más eficiente.
preview
Características del Wizard MQL5 que debe conocer (Parte 33): Núcleos de procesos gaussianos

Características del Wizard MQL5 que debe conocer (Parte 33): Núcleos de procesos gaussianos

Los núcleos del proceso gaussiano son la función de covarianza de la distribución normal que podría desempeñar un papel en el pronóstico. Exploramos este algoritmo único en una clase de señal personalizada de MQL5 para ver si podría usarse como una señal de entrada y salida principal.
preview
Ingeniería de características con Python y MQL5 (Parte II): El ángulo del precio

Ingeniería de características con Python y MQL5 (Parte II): El ángulo del precio

Hay muchas publicaciones en el foro MQL5 pidiendo ayuda para calcular la pendiente de los cambios de precios. Este artículo demostrará una forma posible de calcular el ángulo formado por los cambios de precio en cualquier mercado en el que desee operar. Además, responderemos si vale la pena invertir el esfuerzo y el tiempo extra para diseñar esta nueva característica. Exploraremos si la pendiente del precio puede mejorar la precisión de nuestro modelo de IA al pronosticar el par USDZAR en M1.
preview
Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (Final)

Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (Final)

En artículos anteriores, revisamos los aspectos teóricos del framework PSformer, que incluye dos importantes innovaciones en la arquitectura del Transformer clásico: el mecanismo de compartición de parámetros (PS) y la atención a los segmentos espaciotemporales (SegAtt). En este artículo, continuaremos el trabajo sobre la implementación de los enfoques propuestos mediante MQL5.
preview
Redes neuronales en el trading: Modelo Universal de Generación de Trayectorias (UniTraj)

Redes neuronales en el trading: Modelo Universal de Generación de Trayectorias (UniTraj)

La comprensión del comportamiento de los agentes es importante en distintos ámbitos, pero la mayoría de los métodos se centran en una única tarea (comprensión, eliminación del ruido, predicción), lo cual reduce su eficacia en escenarios del mundo real. En este artículo, propongo al lector introducir un modelo capaz de adaptarse a diferentes tareas.
preview
Redes neuronales en el trading: Sistema multiagente con validación conceptual (Final)

Redes neuronales en el trading: Sistema multiagente con validación conceptual (Final)

Seguimos aplicando los planteamientos propuestos por los autores del framework FinCon. FinCon es un sistema multiagente basado en grandes modelos lingüísticos (LLM). Hoy pondremos en marcha los módulos necesarios y efectuaremos pruebas exhaustivas del modelo con datos históricos reales.
preview
Características del Wizard MQL5 que debe conocer (Parte 40): SAR parabólico

Características del Wizard MQL5 que debe conocer (Parte 40): SAR parabólico

El SAR parabólico (Stop-and-Reversal, SAR) es un indicador de confirmación de tendencia y de puntos de finalización de tendencia. Debido a que es un rezagado en la identificación de tendencias, su propósito principal ha sido posicionar trailing stop loss en posiciones abiertas. Sin embargo, exploramos si realmente podría usarse como una señal de Asesor Experto, gracias a clases de señales personalizadas de Asesores Expertos ensamblados por un asistente.
preview
Redes neuronales en el trading: Detección de objetos con reconocimiento de escena (HyperDet3D)

Redes neuronales en el trading: Detección de objetos con reconocimiento de escena (HyperDet3D)

Le proponemos que conozca un nuevo enfoque de la detección de objetos mediante hiper-redes: una hiper-red de generación de coeficientes de peso para el modelo básico que permite tener en cuenta las peculiaridades del estado actual del mercado. Este enfoque mejora la precisión de las previsiones adaptando el modelo a las distintas condiciones comerciales.
preview
Características del Wizard MQL5 que debe conocer (Parte 43): Aprendizaje por refuerzo con SARSA

Características del Wizard MQL5 que debe conocer (Parte 43): Aprendizaje por refuerzo con SARSA

SARSA, que es la abreviatura de State-Action-Reward-State-Action (Estado-Acción-Recompensa-Estado-Acción), es otro algoritmo que se puede utilizar al implementar el aprendizaje por refuerzo. Por lo tanto, tal y como vimos con Q-Learning y DQN, analizamos cómo se podría explorar e implementar esto como un modelo independiente, en lugar de solo como un mecanismo de entrenamiento, en los asesores expertos ensamblados por el asistente.
preview
Características del Wizard MQL5 que debe conocer (Parte 45): Aprendizaje por refuerzo con Monte-Carlo

Características del Wizard MQL5 que debe conocer (Parte 45): Aprendizaje por refuerzo con Monte-Carlo

Monte-Carlo es el cuarto algoritmo diferente de aprendizaje por refuerzo que estamos considerando con el objetivo de explorar su implementación en los asesores expertos ensamblados por el asistente. Aunque se basa en el muestreo aleatorio, ofrece numerosas posibilidades de simulación que podemos aprovechar.
preview
Características del Wizard MQL5 que debe conocer (Parte 28): Revisión de las GAN con una introducción a las tasas de aprendizaje

Características del Wizard MQL5 que debe conocer (Parte 28): Revisión de las GAN con una introducción a las tasas de aprendizaje

La Tasa de Aprendizaje, es un tamaño de paso hacia un objetivo de entrenamiento en muchos procesos de entrenamiento de algoritmos de aprendizaje automático. Examinamos el impacto que sus múltiples horarios y formatos pueden tener en el rendimiento de una Red Generativa Adversarial, un tipo de red neuronal que ya habíamos examinado en un artículo anterior.
preview
Introducción a Connexus (Parte 1): ¿Cómo utilizar la función WebRequest?

Introducción a Connexus (Parte 1): ¿Cómo utilizar la función WebRequest?

Este artículo es el comienzo de una serie de desarrollos para una biblioteca llamada “Connexus” para facilitar las solicitudes HTTP con MQL5. El objetivo de este proyecto es brindarle al usuario final esta oportunidad y mostrarle cómo utilizar esta biblioteca auxiliar. Mi intención era hacerlo lo más sencillo posible para facilitar el estudio y ofrecer la posibilidad de desarrollos futuros.
preview
Operar con el Calendario Económico MQL5 (Parte 4): Implementación de actualizaciones de noticias en tiempo real en el panel de control

Operar con el Calendario Económico MQL5 (Parte 4): Implementación de actualizaciones de noticias en tiempo real en el panel de control

Este artículo mejora nuestro panel de control del calendario económico al implementar actualizaciones de noticias en tiempo real para mantener la información del mercado actualizada y útil. Integramos técnicas de obtención de datos en tiempo real en MQL5 para actualizar continuamente los eventos en el panel de control, mejorando así la capacidad de respuesta de la interfaz. Esta actualización garantiza que podamos acceder a las últimas noticias económicas directamente desde el panel de control, optimizando las decisiones comerciales basadas en los datos más recientes.
preview
Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)

Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)

En este artículo analizaremos los algoritmos necesarios para utilizar métodos de atención en la resolución de problemas de detección de objetos en nubes de puntos. La detección de objetos en nubes de puntos es bastante importante para muchas aplicaciones del mundo real.
preview
Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (Final)

Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (Final)

Hoy finalizaremos la implementación del framework MacroHFT para el comercio de criptomonedas de alta frecuencia, que utiliza el aprendizaje de refuerzo consciente del contexto y el aprendizaje con memoria para adaptarse a las condiciones dinámicas del mercado. Y al final de este artículo, probaremos los enfoques aplicados con datos históricos reales para evaluar su eficacia.
preview
Redes neuronales en el trading: Modelo adaptativo multiagente (MASA)

Redes neuronales en el trading: Modelo adaptativo multiagente (MASA)

Hoy les propongo familiarizarse con el MASA, un framework adaptativo multiagente que combina el aprendizaje por refuerzo y las estrategias adaptativas para ofrecer un equilibrio armonioso entre la rentabilidad y la gestión del riesgo en condiciones de mercado turbulentas.
preview
Operar con noticias de manera sencilla (Parte 4): Mejora del rendimiento

Operar con noticias de manera sencilla (Parte 4): Mejora del rendimiento

Este artículo profundizará en los métodos para mejorar el tiempo de ejecución del experto en el probador de estrategias. El código se escribirá para dividir los tiempos de los eventos de noticias en categorías por hora. Las horas de estos eventos noticiosos se accederán dentro de la hora especificada. Esto garantiza que el EA pueda gestionar de manera eficiente las operaciones basadas en eventos tanto en entornos de alta como de baja volatilidad.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte V): Autenticación de dos factores (2FA)

Creación de un Panel de administración de operaciones en MQL5 (Parte V): Autenticación de dos factores (2FA)

Hoy discutiremos cómo mejorar la seguridad del Panel de administrador comercial que actualmente se encuentra en desarrollo. Exploraremos cómo implementar MQL5 en una nueva estrategia de seguridad, integrando la API de Telegram para la autenticación de dos factores (2FA). Esta discusión proporcionará información valiosa sobre la aplicación de MQL5 para reforzar las medidas de seguridad. Además, examinaremos la función MathRand, centrándonos en su funcionalidad y cómo se puede utilizar de forma efectiva dentro de nuestro marco de seguridad. ¡Sigue leyendo para descubrir más!
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 4): Analytics Forecaster EA

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 4): Analytics Forecaster EA

Estamos pasando de simplemente ver las métricas analizadas en gráficos a una perspectiva más amplia que incluye la integración de Telegram. Esta mejora permite que los resultados importantes se envíen directamente a tu dispositivo móvil a través de la aplicación Telegram. Acompáñenos en este viaje que exploraremos juntos en este artículo.
preview
Solicitudes en Connexus (Parte 6): Creación de una solicitud y respuesta HTTP

Solicitudes en Connexus (Parte 6): Creación de una solicitud y respuesta HTTP

En este sexto artículo de la serie de la biblioteca Connexus, nos centraremos en una solicitud HTTP completa, cubriendo cada componente que la conforma. Crearemos una clase que represente la solicitud en su conjunto, lo que nos ayudará a reunir las clases creadas anteriormente.
preview
Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (PSformer)

Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (PSformer)

Hoy proponemos al lector un primer contacto con el nuevo framework PSformer, que adapta la arquitectura del Transformer vainilla para resolver problemas de previsión de series temporales multidimensionales. El framework se basa en dos innovaciones clave: el mecanismo de compartición de parámetros (PS) y la atención a los segmentos espaciotemporales (SegAtt).
preview
Operar con el Calendario Económico MQL5 (Parte 5): Mejorar el panel de control con controles adaptables y botones de filtro

Operar con el Calendario Económico MQL5 (Parte 5): Mejorar el panel de control con controles adaptables y botones de filtro

En este artículo, creamos botones para filtros de pares de divisas, niveles de importancia, filtros de tiempo y una opción de cancelación para mejorar el control del panel. Estos botones están programados para responder dinámicamente a las acciones del usuario, lo que permite una interacción fluida. También automatizamos su comportamiento para reflejar los cambios en tiempo real en el panel de control. Esto mejora la funcionalidad general, la movilidad y la capacidad de respuesta del panel.
preview
Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (Final)

Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (Final)

El SAMformer ofrece una solución a los problemas clave del Transformer en la previsión de series temporales a largo plazo, incluida la complejidad del entrenamiento y la escasa generalización a muestras pequeñas. Su arquitectura poco profunda y la optimización con control de nitidez garantizan que se eviten los malos mínimos locales. En este artículo, proseguiremos la aplicación de enfoques utilizando MQL5 y evaluaremos su valor práctico.
preview
Introducción a MQL5 (Parte 10): Guía de trabajo con indicadores incorporados en MQL5 para principiantes

Introducción a MQL5 (Parte 10): Guía de trabajo con indicadores incorporados en MQL5 para principiantes

Este artículo describe cómo trabajar con indicadores incorporados en MQL5, con especial atención en la creación de un asesor experto basado en el indicador RSI utilizando un enfoque de proyecto. Hoy aprenderá a obtener y utilizar los valores RSI, a gestionar las fluctuaciones de liquidez y a mejorar la visualización de las transacciones mediante objetos gráficos. Además, el artículo abordará otros aspectos importantes: el riesgo como porcentaje del depósito, los ratios riesgo/rentabilidad y la modificación del riesgo sobre la marcha para proteger los beneficios.